With the development of related technologies, Location-Based Services (LBS) are growing fast and being used in many ways. Past LBS studies have focused on adoption of LBS because of the fact that LBS users have privacy concerns regarding revealing their location information. Meanwhile, the number of LBS users and revenues from LBS are growing rapidly because users can get some benefits by revealing their location information. Little research has been done on how LBS affects consumers' information search behavior in product purchase. The purpose of this paper is examining the effect of LBS information filtering on buyers' uncertainty and their information search behavior. When consumers purchase a product, they try to reduce uncertainty by searching information. Generally, there are two types of uncertainties - knowledge uncertainty and choice uncertainty. Knowledge uncertainty refers to the lack of information on what kinds of alternatives are available in the market and/or their important attributes. Therefore, consumers having knowledge uncertainty will have difficulties in identifying what alternatives exist in the market to fulfil their needs. Choice uncertainty refers to the lack of information about consumers' own preferences and which alternative will fit in their needs. Therefore, consumers with choice uncertainty have difficulties selecting best product among available alternatives.. According to economics of information theory, consumers narrow the scope of information search when knowledge uncertainty is high. It is because consumers' information search cost is high when their knowledge uncertainty is high. If people do not know available alternatives and their attributes, it takes time and cognitive efforts for them to acquire information about available alternatives. Therefore, they will reduce search breadth. For people with high knowledge uncertainty, the information about products and their attributes is new and of high value for them. Therefore, they will conduct searches more in-depth because they have incentive to acquire more information. When people have high choice uncertainty, people tend to search information about more alternatives. It is because increased search breadth will improve their chances to find better alternative for them. On the other hand, since human's cognitive capacity is limited, the increased search breadth (more alternatives) will reduce the depth of information search for each alternative. Consumers with high choice uncertainty will spend less time and effort for each alternative because considering more alternatives will increase their utility. LBS provides users with the capability to screen alternatives based on the distance from them, which reduces information search costs. Therefore, it is expected that LBS will help users consider more alternatives even when they have high knowledge uncertainty. LBS provides distance information, which helps users choose alternatives appropriate for them. Therefore, users will perceive lower choice uncertainty when they use LBS. In order to test the hypotheses, we selected 80 students and assigned them to one of the two experiment groups. One group was asked to use LBS to search surrounding restaurants and the other group was asked to not use LBS to search nearby restaurants. The experimental tasks and measures items were validated in a pilot experiment. The final measurement items are shown in Appendix A. Each subject was asked to read one of the two scenarios - with or without LBS - and use a smartphone application to pick a restaurant. All behaviors on smartphone were recorded using a recording application. Search breadth was measured by the number of restaurants clicked by each subject. Search depths was measured by two metrics - the average number of sub-level pages each subject visited and the average time spent on each restaurant. The hypotheses were tested using SPSS and PLS. The results show that knowledge uncertainty reduces search breadth (H1a). However, there was no significant correlation between knowledge uncertainty and search depth (H1b). Choice uncertainty significantly reduces search depth (H2b), but no significant relationship was found between choice uncertainty and search breadth (H2a). LBS information filtering significantly reduces the buyers' choice uncertainty (H4) and reduces the negative relationship between knowledge uncertainty and search breadth (H3). This research provides some important implications for service providers. Service providers should use different strategies based on their service properties. For those service providers who are not well-known to consumers (high knowledge uncertainty) should encourage their customers to use LBS. This is because LBS would increase buyers' consideration sets when the knowledge uncertainty is high. Therefore, less known services have chances to be included in consumers' consideration sets with LBS. On the other hand, LBS information filtering decrease choice uncertainty and the near service providers are more likely to be selected than without LBS. Hence, service providers should analyze geographically approximate competitors' strength and try to reduce the gap so that they can have chances to be included in the consideration set.
The purpose of this study is to analyze the search pattern and search outcome of the National Central Library OPAC users by measuring their success rates and identifying the factors of failure and the personal background which bring about the differences of the search outcome. Various methods have been used for the study. Personal interview was used to find the pattern of the search, observation method was used to investigate the search process and the failure factors, and a questionnaire was used to survey personal background of searchers. The data were collected during the period of 7 days from April 17, 1995 through April 23, 1995. The search of 1, 217 cases, sampling systematically 25% out of the whole users, were collected and analyzed for the study. The findings of the study can be summarized as follows : First, in regard to the pattern, known-item search(72.6%) was preferred to the subject search(27.4%) and in case of known-item search the access point used were in the order of title, author, title and author. Second, the overall success rate of known-item search was 50.3% and the success rates were in order of author and date, title, and author. The failure factors of known-item search were divided into users factor of 67% and the database factor of 33%, respectively. Third, in case of subject search, its overall success rate was 44.1% and the keyword was the major access point, and the average of precision ratio was very low. Fourth, the analysis of the personal background related to the search outcome has shown significant differences by sex, the experience of using OPAC, education level, and the frequency of using other information retrieval systems. Based on the results the following suggestions can be made to improve the search outcome : First, the system should be su n.0, pplemented online help function to assist users to overcome the failure during search. Second, user instruction in group or individual should be implemented for the users to understand the system.
블록정합에 기초한 고속 움직임 추정 알고리듬은 탐색점의 수를 줄이기 위해 정해진 탐색패턴을 사용하며, 평균절대 오차 공간에서 오차는 전역 최소해 (global minimum)에 근접할수록 단조 감소한다는 가정을 바탕으로 하고 있다. 따라서, 탐색영역 내에 여러 최소점이 있는 다중 모달(multimodal) 해공간에서는 국소 최소해(local minima)에 고립될 가능성이 크며, 전역 최소해를 얻는 것은 초기 탐색점에 크게 의존한다. 이러한 현상은 서로 다른 여러 움직임이 공존하는 움직임 경계에서 더욱 부각된다. 이러한 문제점을 개선하기 위하여 본 논문에서는 시공간적으로 인접한 블록의 움직임 정보에 기초하여 탐색영역 내에 탐색 후보영역들을 정의하고, 국소 최소해로의 고립 가능성을 줄이기 위해 여러 후보영역들에 대한 다중 국소 탐색법(multiple local search method : MLSM)을 제안한다 또한, 다중 국소 탐색 법에서는 전체 후보영역들의 탐색으로 인한 부가적인 계산량을 줄이기 위해 탐색점 맵 상에 후보영역들을 표시하고 후보영역에 대한 중복탐색을 배제한다. 모의실험 결과 제안한 방법은 다른 경사법에 의한 결과보다 특히, 움직임 경계에서의 탐색에서 우수한 결과를 보였으며, PSNR에 대해서는 탐색점의 수를 증가시키지 않는 범위 내에서 전역 탐색법(full search : FS)에 의한 결과와 비슷한 결과를 얻을 수 있었다.
고속 움직임 추정을 위한 다 해상도 블록 정합 기법을 제안한다 최저 해상도 계층에서 전역 탐색을 통해 최소 정함 오치를 갖는 움직임 벡터를 선택하고, 공간적으로 인접한 블록들의 움직임 벡터들 중에서 최소 정합 오차를 갖는 움직임 벡터를 찾는다 이 때, 주변 움직임 벡터들의 보다 정확한 탐색을 위해 저 해상도 계층에서도 움직임 벡터의 양자화 없이 탐색을 할 수 있는 효과적인 방법을 제안한다. 이렇게 얻어진 2개의 움직임 벡터들은 중간 해상도 계층에서의 탐색을 위한 초기 탐색 중심점들로 사용된다 중간 계층에서, 각 초기점을 중심으로 훨씬 좁아진 영역에서의 지역 탐색을 수행한다. 최저 해상도 계층에서 주변 움직임 벡터 탐색을 위해 사용했던 방법을 이용하면, 각 지역 탐색을 정수 화소 단위로 수행할 수 있다 지역 탐색 영역 내에서 최소 정함 오차를 갖는 움직임 벡터를 찾고, 이 벡터를 중심으로 마지막 계층에서의 마지막 탐색을 수행한다 그러나, 중간 해상도 계층에서 이미 정수 화소 단위의 정확한 움직임 벡터 추정을 수행했기 때문에, 마지막 최고 해상도 계층에서의 지역 탐색은 전체 성능에 미미한 영향을 주게 된다. 따라서 최고 해상도 계층에서의 탐색을 생략하더라도 성능 저하 없이 탐색 속도를 향상시킬 수 있다 모의 실험을 통해 최고 계층에서의 지역 탐색을 생략하더라도 제안한 블록 정합 기법이 전역 탐색 기법에 비해 보편적인 MPEG2 부호화 환경 하에서 최대 02dB의 PSNR 저하만을 보이며, 200배 이상의 계산 속도를 가점을 보인다 또한, 제안한 기법은 규칙적인 데이터 흐름을 가지am로 하드웨어 구현에도 적합하다.
본 논문은 불확실한 객체의 영상 정보를 객체의 에지 특징정보를 이용하여 내용기반검색기법으로 CBIRS/EFI을 제안했다. 특히 객체의 부분 영상 정보의 경우 효율적으로 검색하기 위해 객체의 특징 정보 중 윤곽선 정보와 색체정보 추출하여 검색기법이다. 이를 실험하기 위해 지하 주차장의 차량 이미지를 캡처한후 객체의 특징 정보를 위한 차량의 측면 에지 특징 정보를 추출하였다. 검색하고자하는 원 영상과 특징 추출한 영상을 분석 결과와 최종 유사도 측정 결과에 의해 내용기반 검색을 적용하는 시스템으로, 기존 특징 추출 내용 기반 영상 검색 시스템인 FE-CBIRS 시스템에 비해 검색율의 정확성과 효율성을 향상 시키는 기능이 보완되었다. CBIRS/EF시스템의 성능평가는 차량의 색상 정보와 차량의 에지 추출 특징 정보를 적용하여 영역 특징정보를 검색하는 과정에서 색상 특징 검색 시간, 모양 특징 검색 시간과 검색 율을 비교 했다. 차량 에지 특징 추출률의 경우 91.84% 추출하였고, 차량 색상 검색 시간, 모양 특징 검색시간, 유사도 검색시간에서 CBIRS/EFI가 FE-CBIRS 보다 평균 검색시간이 평균 0.4~0.9초의 차이를 보고 있어 우수한 것으로 증명되었다.
The purpose of this study is to clarify the educational literature search methodology objectives and the content structure of a course in bibliography. The content of this study can be summarized as follows: 1. The concept and domain of literature search methodology, which has traditionally gone by the name of a guide to use of literature and library, are described. 2. The need of incorporating the methodology into regular college curriculum was investigated in view of the ideology of college education. 3. The background, process, and current status of offering a course in the methodology as a part of regular college curriculum were examined. 4. The educational objective of a course in the methodology was set at the successful activities in self study, life-long-education, and special topic research. 5. Considering the fact that technical knowledge and propositional knowledge should be realized simultaneously, that educational experience should go hand in hand with materials and library, and that knowledge should be constructed systematically and logically, the content structure of the methodology were divided into the following six categories: a) the significance of the methodology of literature search b) the college library and the activities of literature search c) types and characteristics of materials d) literature search by catalog e) explanation of basic bibliography f) research and literature search
This paper deals with the dynamic hand gesture recognition based on computer vision using neural networks. This paper proposes a global search method and a local search method to recognize the hand gesture. The global search recognizes a hand among the hand candidates through the entire image search, and the local search recognizes and tracks only the hand through the block search. Dynamic hand gesture recognition method is based on the skin-color and shape analysis with the invariant moment and direction information. Starting point and ending point of the dynamic hand gesture are obtained from hand shape. Experiments have been conducted for hand extraction, hand recognition and dynamic hand gesture recognition. Experimental results show the validity of the proposed method.
본 연구는 정보탐색 노력에 대해 정보의 모호성으로 인해 발생하는 불확실성의 지각, 불협화음의 인지, 그리고 관여정도가 작용하게 되는 역할에 대해 살펴보았다. 본 연구가설의 검증을 위해 정보탐색의 경험이 있는 155명의 설문을 활용하였다. 정보탐색 노력에 영향을 미치는 요인들로 정보의 모호성으로 인한 지각된 불확실성수준, 불협화음의 인지, 그리고 관여정도로 파악되었다. 본 연구의 결과를 통해 정보의 모호성으로 인해 나타나는 정보탐색 과정에 이러한 요인들이 어떠한 관계를 갖고 있으며 그 차이점을 제시하여 정보탐색 행동을 이해하는데 새로운 방향을 제시하였다고 본다.
In this paper, a new algorithm has been presented that helps to preserve diversity as well as to enhance the convergence speed of the evolutionary programming. This algorithm is based on the cell partitioning of search region for preserving the diversity. Until now, the greater part of researches is not concerned about preserving the diversity of individuals in a population but improving convergence speed. Although these evolutions are started from multi-point search at the early phase, but at the end those search points are swarming about a one-point, the strong candidate. These evolutions vary from the original idea in some points such as multi-point search. In most case we want to find the only one point of the best solution not several points in the vicinity of that. That is why the cell partitioning of search region has been used. By restricting the search area of each individual, the diversity of individual in solution space is preserved and the convergence speed is enhanced. The efficiency of the proposed algorithm has been verified through benchmark test functions.
Journal of Information Technology Applications and Management
/
제16권1호
/
pp.21-36
/
2009
As the World Wide Web (WWW) has become a major channel for information delivery, the data accumulated in the Internet increases at an incredible speed, and it derives the advances of information search technologies. It is the search engine that solves the problem of information overloading and helps people to identify relevant information. However, as search engines become a powerful tool for finding information, the opportunities of plagiarizing have increased significantly in e-Learning. In this paper, we developed an online plagiarism detection system for detecting plagiarized documents that incorporates the functions of search engines and acts in exactly the same way of plagiarizing. The plagiarism detection system uses morpheme analysis to improve the performance and sentence-based comparison to investigate document comes from multiple sources. As a result of applying this system in e-Learning, the performance of plagiarism detection was improved.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.