• Title/Summary/Keyword: 90$^{\circ}$ Hybrid Coupler

Search Result 33, Processing Time 0.02 seconds

1.8-GHz Six-Port-Based Impedance Modulator Using CMOS Technology (CMOS 공정을 이용한 1.8 GHz 6-포트 기반의 임피던스 변조기)

  • Kim, Jinhyun;Kim, Jeong-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.383-388
    • /
    • 2018
  • This paper presents a 1.8 GHz six-port-based impedance modulator using CMOS technology, which can select an arbitrary load impedance with switch control. The proposed 1.8-GHz impedance modulator comprises a Wilkinson power divider, three quadrature hybrid couplers, and four SP3T switches for each load impedance selection. The measured insertion loss of -13 dB and the input/output return losses of >10 dB are achieved in the range of 1.4~2.2 GHz. The low drop output regulator for a stable 3.3 V DC power and the serial peripheral interface(SPI) for an easy digital control are integrated. The chip size, including the pads, is $1.7{\times}1.8mm^2$.

Design of a 4-bit Digital Phase Shifter in Quasimillimeter Wave Band for Satellite Communication (준밀리미터파대 위성통신용 4-bit 디지털 위상변위기의 설계)

  • 신동환;임인성;김우재;민경일;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.3
    • /
    • pp.461-470
    • /
    • 1999
  • This paper presents the description of a 4-bit digital p-i-n diode phase shifter that was designed for quasimillimeter wave band satellite receiver to use in phased-array systems. 180$^{\circ}$ and 90$^{\circ}$ cells are designed in reflection type that consists of a 3-dB rat-race hybrid coupler, 45$^{\circ}$ and 22.5$^{\circ}$ cells are designed in loaded-line type to reduce the size of circuit and the number of diode to be used. The 4-bit phase shifter uses eight p-i-n diodes mounted in the microstrip circuit. The average insertion loss for the 16 phase states is 6.92dB over the 19.8~20.3 GHz band and maximum phase error is 6.2$^{\circ}$ at 20 GHz.

  • PDF

Design and fabrication of multi-band six-port phase correlator using metamaterial (메타물질 구조 다중대역 6단자 위상상관기 설계 및 제작)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2615-2621
    • /
    • 2010
  • The multi-band six-port phase correlator using metamaterial was designed and fabricated in this paper. The lumped metamaterial structure that can process the dual-band receiving signal was analyzed. Based on the analyzed results, the small-sized metamatrial six-port phase correlator for multi-band direct conversion method was proposed and fabricated. Also, the resistive power divider and $90^{\circ}$ hybrid coupler that comprises the six-port phase correlator were implemented based on the scattering parameters of metamatrial six-port phase correlator. The measured results of the proposed six-port phase correlator show the good agreement with simulation results. The performance of the six-port phase correlator shows the reflection loss below -20 dB in the dual-band. Also, the proposed six-port phase correlator got a good transmission characteristic within 1 dB gain difference and ${\pm}4.1^{\circ}$ phase imbalance, respectively.

A New Structure Frequency Doubler Using Phase Delay Line (위상 지연 선로를 이용한 새로운 구조의 주파수 2체배기)

  • Cho, Seung-Yong;Lee, Kyoung-Hak;Kim, Yong-Hwan;Do, Ji-Hoon;Lee, Hyung-Kyu;Hong, Ui-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2A
    • /
    • pp.213-219
    • /
    • 2007
  • In this paper, A novel structure of frequency doubler using Phase Delay line and $90^{\circ}$ Hybrid coupler at harmonic output have been designed and implemented to improve suppression. Proposed structure of frequency doubler improve output. coupling and fundamental suppression. Active frequency doubler with band from $2.13{\sim}2.15GHz\;to\;4.26{\sim}4.3GHz$ was designed and fabricated with 10dBm input power, 0.79dB conversion gain and -55.54dBc suppression at fundamental frequency, -44.76dBc suppression at third harmonic frequency 6.42GHz and -39.18dBc suppression at fourth harmonic frequency 8.56GHz.

Design of Dual-Band GPS Array Antenna Using In-Direct Feeding Pad (간접급전 패드를 이용한 이중 대역 GPS 배열 안테나 설계)

  • Kang, Seung-Seok;Seo, Seung-Mo;Byun, Gangil;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.5
    • /
    • pp.355-365
    • /
    • 2017
  • In this paper, we propose the design of a dual-band GPS antenna using in-direct feeding pads. The antenna consists of an upper patch for the GPS L1 band, a lower patch for the GPS L2 band, and two pads on the middle layer for feeding the two radiating patches. A hybrid chip coupler with a phase difference of $90^{\circ}$ is employed at the two feeding ports for achieving a broad circular polarization (CP) bandwidth. The proposed antenna shows bore-sight gains of 3.0 dBic(L1) and 5.1 dBic(L2), and axial ratios of 3.3 dB(L1) and 0.3 dB(L2) by measurement. The active element patterns of the fabricated array with 7 elements show bore-sight gains of -0.4 dBic (L1) and -2.4 dBic(L2), respectively. It proves that the proposed antenna structure is suitable for use in GPS array applications.

Phase shitter design and implementation of DGS using ferroelectric materials (강유전체를 이용한 DGS 구조의 위상 변위기 설계 및 구현)

  • Kim, Young-Ju;Park, Jun-Seok;Kim, Young-Tae;Kim, Sun-Hyeong;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2014-2016
    • /
    • 2004
  • In order to obtain a low-loss ferroelectric phase shifter, the reflection-type phase shifter with ferroelectric defected ground structure (DGS) resonators has been designed in this paper. The proposed phase shifter is consist of a 3-dB $90^{\circ}$ branch-line hybrid coupler and terminated reflective circuit with tunable ferroelectric DGS resonator. The ferroelectric DGS unit structure can provide high Q resonator characteristic at high frequencies. The design parameters of equivalent circuit for the tunable DGS resonator are derived by using simple circuit analysis method and three-dimensional full wave finite element method. The fabricated phase shifter has an insertion loss of better than 3.4dB at 13.5GHz.

  • PDF

Design and Implementation of Reactive Circuit for Ferroelectric Phase Shifter (강유전체 위상 변위기를 위한 Reactive Circuit 설계 및 구현)

  • Kim Young-Tae;Moon Seung-Eon;Lee Su-Jae;Kim Sun-Hyeong;Park Jun-Seok;Cho Hong-Goo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.286-288
    • /
    • 2003
  • In this paper, in order to obtain a large differential phase shift with a little change in applied voltage, a ferroelectric reflective load circuit has been designed on top of barium strontium titanate $(Ba,Sr)TiO_3$ [BST] thin film. The design of the ferroelectric reflection-type phase shifter is based on a reflection theory of terminating circuit, which has a reflection-type analogue phase shifter with two ports terminated in symmetric phase-controllable reflective networks. To achieve large amounts of phase shift in low bias-voltage range, the effects of change of capacitance and transmission line connected with two coupled ports of a 3-dB $90^{\circ}$ branch-line hybrid coupler have been investigated. A large phase shift with a small capacitance change in the parallel terminating circuit has been demonstrated in the paper.

  • PDF

A 24-GHz Wide-IF Down-Conversion Mixer Based on 0.13-μm RFCMOS Technology (0.13-μm RFCMOS 공정 기반 24-GHz 광대역 하향 변환 혼합기)

  • Kim, Dong-Hyun;Rieh, Jae-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1235-1239
    • /
    • 2010
  • In this work, a wideband technique has been proposed that improves the IF bandwidth of mixers and a 24-GHz down-conversion mixer employing the proposed technique has been designed and fabricated based on 0.13-${\mu}m$ RFCMOS technology. The mixer showed the conversion gain of $2.7{\pm}1.5$ dB from DC to 5.25 GHz IF for a fixed LO frequency of 24 GHz. Measured P-1dB and LO-RF isolation was -8.7 dBm and 21 dB, respectively. The mixer draws DC current of 10.6 mA from 1.3 V supply.

Tx/Rx Isolation enhancement of the Planar Patch Antenna at 5.8GHz ISM band (5.8GHz ISM 대역 평면안테나의 송수신분리도 개선)

  • Yun, Gi-Ho
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.385-392
    • /
    • 2013
  • In this paper, microstrip antenna to enhance the isolation between transmitting port and receiving port under the proximity objects is proposed, and applied to the Doppler radar sensor working at 5.8GHz ISM band which detects vital signals of a human body. Two 3dB quadrature hybrids are placed around radiation patch to form a balanced structure between transmitting port and receiving port, such that it consistently provides enhanced Tx/Rx isolation and excellent return loss over nearby objects. It is theoretically analyzed and simulated to verify the validity of the proposed application. The fabricated antenna that is 2mm away from the human body, has more than 16 dB return loss and at least 30dB isolation over ISM frequency band of 5.8GHz.

Active GNSS Antenna Implemented with Two-Stage LNA on High Permittivity Substrate

  • Go, Jong-Gyu;Chung, Jae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2004-2010
    • /
    • 2018
  • We propose a small active antenna to receive Global Navigation Satellite System (GNSS) signals, i.e., Global Positioning System (GPS) L1 (1,575MHz) and Russian Global Navigation Satellite System (GLONASS) L1 (1,600 MHz) signals. A two-stage low-noise amplifier (LNA) with more than 27 dB gain is implemented in the bottom layer of a three-layer antenna package. In addition, a hybrid coupler is used to combine signals from pair of proximately coupled orthogonal feeds with $90^{\circ}$ phase difference to achieve the circular polarization (CP) characteristic. Three layers of high permittivity (${\varepsilon}_r=10$) substrates are stacked and effectively integrated to have a small dimension of $64mm{\times}64mm{\times}7.42mm$ (including both circuit and antenna). The reflection coefficient of the fabricated antenna at the target frequency is below -10 dB, the measured antenna gain is above 26 dBic and the measured noise figure is less than 1.4 dB.