• 제목/요약/키워드: 9-12%Cr steel

검색결과 33건 처리시간 0.027초

Electronic Behaviors of Passive Films Formed on Fe-Cr and Fe-Cr-Mo Ferritic Stainless Steels Studied by Mott-Schottky and Cyclic Voltammetry Techniques

  • Kim, Suk-Won;Yoon, Sang-In;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • 제2권1호
    • /
    • pp.12-17
    • /
    • 2003
  • The effects of Cr content and film formation potential on electronic behaviors of the passive film on Fe-Cr alloys were investigated in borate buffer solution. Influence of pH on passive films of both Fe-Cr and Fe-Cr-Mo alloys was also investigated. Mott-Schottky and cyclic voltammetry techniques were used to elucidate electronic behaviors of passive films and their electrochemical characteristics. AES analysis of passive films was carried out. Results showed that doping density decreased as Cr content and film formation potentials increased. The addition of Mo to Fe-Cr alloy had little influence on donor densities in pH 9.2 solution but some effects on the decrease in donor densities in pH 1.6 acidic solution.

마르텐사이트계 스테인리스강 (12%Cr) 의 피로균열 진전거동 및 파괴인성연구 (A Study on the Fatigue Crack Growth Behavior and Fracture Toughness of Martensitic Stainless Steel(12%Cr))

  • 윤병주
    • 한국생산제조학회지
    • /
    • 제9권4호
    • /
    • pp.154-160
    • /
    • 2000
  • Martensitic stainless steels containing 12%Cr are commonly used in quenched and tempered conditions. The quenching heat treatment involves annealing to obtain austenite and to dissolve the carbides , followed by cooling to transform the austenite into martensite and often to cause carbide predipitation. In this study, we used three different tempered specimens which were temperated at 30$0^{\circ}C$, 67$0^{\circ}C$ and 75$0^{\circ}C$ . The crack propagation and fracture toughness tests were performed on this three different specimens. The experimental results showed that the highest value of crack growth rate and the lowest value of fracture toughness were observed in the specimen which were temperated at $600^{\circ}C$, however, when the specimen were temperated at 75$0^{\circ}C$, the vale of crack growth rate was significantly decreased and the value of fracture toughness was significantly increased as compared to which were temperated at $600^{\circ}C$.

  • PDF

다이아몬드 강화 Cr 기반 소재의 정량적 마모 특성 평가 (Quantitative Assessment of Wear Characteristics of Cr-based Coating Reinforced with Diamond)

  • 후인 옥-팟;부 아 린;정구현
    • Tribology and Lubricants
    • /
    • 제38권1호
    • /
    • pp.15-21
    • /
    • 2022
  • Diamond reinforced Cr-based coating has been proposed as wear-resistant materials. In this study, the friction and wear characteristics of diamond reinforced Cr-based coating are experimentally assessed. The experiments are performed using a pin-on-reciprocating plate tribo-tester under various normal forces with boundary lubrication. The stainless-steel ball is used as a counter material. Prior to the experiments, mechanical properties such as elastic modulus and hardness are determined using nanoscale instrumented indentation. The hardness of the specimen is further determined using a Vickers hardness tester. The specimens before and after the experiments are carefully observed using a confocal microscope to understand the wear characteristics. In addition, the wear volume and wear rate of the specimens are determined based on the confocal microscope data. The results show that the friction coefficients are 0.096-0.100 under 20-40 N normal forces. Furthermore, the wear rates of the diamond reinforced Cr-based coating and the stainless steel ball under 20-40 N normal forces are found to be 12.8 × 10-8 mm3/(Nm)-15.5 × 10-8 mm3/(Nm) and 1.9 × 10-8 mm3/(Nm)-3.9 × 10-8 mm3/(Nm), respectively. However, the effect of the normal force on wear rates is not clearly observed, which may be associated with the flattening of the ball. The results of the study may be useful for the tribological applicability of diamond reinforced Cr-based coating as wear-resistant materials.

발전용 저탄소 ASTM A356 CA6NM 마르텐사이트계 스테인리스 주강의 용접성 (Weldability of Low-Carbon ASTM A356 CA6NM Martensitic Stainless Steel Casting for Power Plants)

  • 방국수;박찬;이주영;이경운
    • 대한금속재료학회지
    • /
    • 제49권1호
    • /
    • pp.73-78
    • /
    • 2011
  • Weldability, especially HAZ cold cracking, weld metal solidification cracking, and HAZ liquation cracking susceptibilities, of ASTM A356 CA6NM martensitic stainless steel casting was investigated and compared with that of 9-12% Cr ferritic steel castings. Irrespective of the Cr and Ni content in the castings, the HAZ maximum hardness increased with an increase of carbon content. CA6NM steel, which has the lowest carbon content, had the lowest HAZ hardness and showed no cold cracking in y-slit cracking tests. CA6NM steel, meanwhile, showed the largest weld metal solidification cracking susceptibility in varestraint tests because of its higher amount of impurity elements, phosphorus, and sulfur. All castings investigated had good high temperature ductility in hot ductility tests and showed little difference in liquation cracking susceptibility.

Assessment of $13{\sim}19%Cr$ Ferritic Oxide Dispersion Strengthened Steels for Fuel Cladding Applications

  • Lee, J.S.;Kim, I.S.;Kimura, A.;Choo, K.N.;Kim, B.G.;Choo, Y.S.;Kang, Y.H.
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 2004년도 추계학술발표회 발표논문집
    • /
    • pp.911-912
    • /
    • 2004
  • 1. Cathodic hydrogen charging considerably reduced the tensile ductility of ODS steels and a 9Cr-2W RMS. The hydrogen embrittlement of ODS steels was strongly affected by specimen sampling orientation, showing significant embrittlement in the T-direction. This comes from the microstructural anisotropy caused by elongated grains of ODS steels in L-direction. 2. The ODS steels contained a higher concentration of hydrogen than 9Cr-2W RMS at the same cathodic charging condition, and the critical hydrogen concentration required to transition from ductile to brittle fracture was in the range of $10{\sim}12$ wppm, which approximately 10 times larger than that of a 9Cr-2W martensitic steel. 3. The ODS steels showed a typical ductile to brittle transition behavior and it strongly depended on the specimen sampling direction, namely L- and T-direction. In T-direction, the SP-DBTT was about 170 L, irrespective of the ODS materials, and L-direction showed a lower SP-DBTT than that of T-direction.

  • PDF

스테인리스 스틸 연결재의 Cr이 LSCF 양극의 분극저항에 미치는 영향 (The Effect of Cr from STS Interconnect on the Polarization Resistance of LSCF Cathode)

  • 황호준;최경만
    • 한국세라믹학회지
    • /
    • 제44권12호
    • /
    • pp.715-719
    • /
    • 2007
  • STS444 with or without $La_{0.9}Sr_{0.1}MnO_3$ (LSM)-coating was contacted to $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ (LSCF) cathode on various electrolyte materials and the polarization resistance $(R_p)$ was measured by impedance spectroscopy. By making a symmetric half-cell and contacting only one side of the cathode with the interconnect, the effect of chromium (Cr) poisoning was separated from the aging effects. When the LSCF cathode was contacted with LSM-coated STS (stainless steel), $R_p$ of LSCF was lower than that contacted with the uncoated STS. Impedance patterns measured for the working electrode (W.E.), the counter electrode (C.E.) at $600^{\circ}C$ in air were analyzed. Normalized data of net Cr effect showed that $Ce_{0.9}Gd_{0.1}O_2$ (GDC) electrolyte is more tolerant to the chromium poisoning than $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}$ (LSGM) or 8 mol% $Y_2O_3-doped$ $ZrO_2$ (YSZ) electrolytes.

소형펀치-크리프 시험에 대한 응력해석과 일축 크리프 시험과의 상관성에 관한 연구 (A Study on Stress Analysis of Small Punch-Creep Test and Its Experimental Correlations with Uniaxial-Creep Test)

  • 이송인;백승세;권일현;유효선
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2565-2573
    • /
    • 2002
  • A basic research was performed to ensure the usefulness of Small Punch-creep(SP-creep) test for residual life evaluation of heat resistant components effectively. This paper presents analytical results of initial stress and strain distributions in SP specimen caused by constant loading for SP-creep test and its experimental correlations with uniaxial creep(Ten-creep) test on 9Cr1MoVNb steel. It was shown that the initial maximum equivalent stress, ${\sigma}_{eq{\cdot}max}$ from FE analysis was correlated with steady-state equivalent creep strain rate, ${\epsilon}_{qf-ss'}$ rupture time, $t_r$, activation energy, Q and Larson-Miller Parameter, LMP during SP-creep deformation. The simple correlation laws, ${\sigma}_{sp}-{\sigma}_{TEN}$, $P_{sp}-{\sigma}_{TEN}\; and\; Q_{sp}-Q_{TEN}$ adopted to established a quantitative correlation between SP-creep and Ten-creep test data. Especially, the activation energy obtained from SP-creep test is linearly related to that from Ten-creep test at $650^{\circ}C$ as follows : $Q_{SP-P}\;{\risingdotseq}\;1.37 \;Q_{TEN},\; Q_{SP-{\sigma}}{\risingdotseq}1.53\; Q_{TEN}$.

G91강 저주파 피로균열 성장에 미치는 온도와 응력비의 영향 (Effects of Temperature and Stress Ratio on Low-Cycle Fatigue Crack Growth of G91 Steel)

  • 김종범;황수경;김범준;이종훈;박창규;이형연;김문기;임병수
    • 대한금속재료학회지
    • /
    • 제50권4호
    • /
    • pp.271-279
    • /
    • 2012
  • 9-12% Cr steels have been used in thermal power plants which repeat start and stop operations. Major factors of fatigue life are temperature, frequency, stress ratio, holding time, microstructure, and environment. Normally, fatigue life decreases at high temperature, low frequency, high stress ratio, and long holding time conditions. A Mod.9Cr-1Mo steel, called G91, was developed at ORNL (Oak Ridge National Laboratory, USA) and was adopted as a high-temperature structural material in the ASME Code in 2004. However, its low-cycle fatigue and fatigue crack growth characteristics have been rarely studied. In this work, we have investigated the low-cycle fatigue crack growth behaviors of G91 steel under various test conditions in terms of temperature and stress ratio. As temperature and stress ratio increase, the crack growth rate becomes faster and striation distance also increases. On the other hand, the number of branch cracks decreases.

Ti 함유된 스테인리스강 용접부의 전기화학적 특성 (Electrochemical Characteristics of Welded Stainless Steels Containing Ti)

  • 최한철
    • 한국표면공학회지
    • /
    • 제38권6호
    • /
    • pp.227-233
    • /
    • 2005
  • Electrochemical characteristics of welded stainless steels containing Ti have been studied by using the electrochemical techniques in 0.5 M $H_2SO_4$+0.01 M KSCN solutions at $25^{\circ}C$. Stainless steels with 12 mm thick-ness containing $0.2{\~}0.9 wt\%$ Ti were fabricated with vacuum melting and following rolling process. The stainless steels were solutionized for 1hr at $1050^{\circ}C$ and welded by MIG method. Samples were individually prepared with welded zone, heat affected zone, and matrix for intergranular corrosion and pitting test. Optical microscope, XRD and SEM are used for analysing microstructure, surface and corrosion morphology of the stainless steels. The welded zone of the stainless steel with lower Ti content have shown dendrite structure mixed with $\gamma$ and $\delta$ phase. The Cr-carbides were precipitated at twin and grain boundary in heat affected zone of the steel and also the matrix had the typical solutionized structure. The result of electrochemical measurements showed that the corrosion potential of welded stainless steel were Increased with higher Ti content. On the other hand, reactivation($I_r$), passivation and active current($I_a$) density were decreased with higher Ti content. In the case of lower Ti content, the corrosion attack of welded stainless steel was remarkably occurred along intergranular boundary and ${\gamma}/{\delta}$ phase boundary in heat affected zone.

마르텐사이트계 스테인리스강의 템퍼 취성과 준안정상에 관한 분석 (Analysis on Temper Embrittlement and Metastable Phase of Martensitic Stainless Steel)

  • 이길재;최병학;김재훈
    • 열처리공학회지
    • /
    • 제34권1호
    • /
    • pp.1-9
    • /
    • 2021
  • The martensitic stainless steel has excellent corrosion resistance and higher strength by quenching and tempering heat treatment. It has been widely used as blade material due to these properties. The hardness and impact toughness of martensitic stainless steel depended strongly on tempering temperatures. The 12Cr martensite stainless steel (SS 410) tempered about 540℃ showed temper embrittlement. To know cause of temper embrittlement in terms of phase identification, a detailed analysis of electron diffraction patterns during TEM observations has been carried out on the <110>α-Fe and <113>α-Fe zone axes for temper embrittlement specimen. The double electron diffraction spots at 1/3(211) and 2/3(211) positions were observed. The lattice space between individual diffraction spots was about 3.5 Å and this value coincide with three times to α-bcc lattice space (1.17 Å). The area which found double diffraction spots was judged metastable "zone" similar to the omega phase and induced embrittlement of SS410 material.