• Title/Summary/Keyword: 802.11a

Search Result 1,337, Processing Time 0.027 seconds

Performance Analysis of Two-Level Frame Aggregation in IEEE 802.11n (IEEE 802.11n에서의 2단계 프레임 집약 기법 성능 분석)

  • Song, Taewon;Pack, Sangheon;Youn, Joo Sang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.473-476
    • /
    • 2009
  • Frame Aggregation is a promissing technology for improving MAC throughput in IEEE 802.11n. In IEEE 802.11n, two frame aggregation schemes, Aggregate MSDU (A-MSDU) and Aggregate MPDU (A-MPDU), are defined. In this paper, we analyze the performance the two-level frame aggregation scheme where A-MSDU and A-MPDU are combined. We develop the analytical model for the two-level frame aggregation scheme and present numerical results on the effect of bit error rate, aggregation size, and the number of nodes.

  • PDF

Adaptive EDCF for IEEE802.lie MAC Protocol (IEEE 802.11e MAC의 성능향상을 위한 적응형 EDCF)

  • Kim Kun su;Kim Beob jeon;Park Jung shin;Lee Jai yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12A
    • /
    • pp.1367-1374
    • /
    • 2004
  • Efforts for standardization of medium access control (MAC) protocol in IEEE802.11e have been made to support quality of service (QoS) in IEEE802.11 MAC protocol. Enhanced distributed coordination function (EDCF) of 802.11e MAC protocol is modified to support QoS for packets that have differentiated priority. However, EDCF still has e problem of throughput optimization and priority support. Therefore, we have proposed a scheme called adaptive EDCF for both supporting priority of packets and throughput optimization. We have derived the relation between the number of nodes and contention window size for throughput optimization. Based on the analytic results, we have evaluated the performance of the proposed scheme using OPNET simulations. The simulation results show that using the proposed scheme can Improve the overall throughput regardless of the number of nodes and the decrement of the throughput with increasing the number of nodes can be alleviated. Additionally, we have shown that the adaptive EDCF can support priority of packets more effectively than existing EDCF.

Measurement-based Channel Hopping Scheme against Jamming Attacks in IEEE 802.11 Wireless Networks (IEEE 802.11 무선랜 재밍 환경에서의 측정 기반 채널 도약 기법)

  • Jeong, Seung-Myeong;Jeung, Jae-Min;Lim, Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.205-213
    • /
    • 2012
  • In this paper, we propose a new channel hopping scheme based on IEEE 802.11h as a good countermeasure against jamming attacks in IEEE 802.11 wireless networks. 802.11h Dynamic Frequency Selection (DFS) is a mechanism which enables hopping to a best channel with full channel measurement, not a randomly chosen channel, when the current link quality degradation occurs due to interferers such as military radars. However, under jammer attacks, this needs a time for full channel measurement before a new channel hopping and due to link disconnection during the time network performance degradation is inevitable. In contrast, our proposed schemes make an immediate response right after a jammer detection since every device is aware of next hopping channel in advance. To do this, a next hopping channel is announced by Beacon frames and the channel is selected by full channel measurement within Beacon intervals. Simulation results show that proposed scheme minimizes throughput degradation and keeps the advantages of DFS.

Optimal Frame Aggregation Level for Connectivity-Based Multipolling Protocol in IEEE 802.11 Wireless LANs (IEEE 802.11 무선랜에서 연결정보 기반의 멀티폴링 프로토콜을 위한 최적의 프레임 애그리게이션 레벨)

  • Choi, Woo-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.5
    • /
    • pp.520-525
    • /
    • 2014
  • When the PCF (Point Coordinated Function) MAC protocol is combined with the frame aggregation method to enhance the MAC performance in IEEE 802.11 wireless LANs, the formulae for the optimal frame aggregation level for best PCF MAC performance were derived in our previous study. We extend the formulae for the PCF protocol to derive the optimal frame aggregation level for the connectivity-based multipolling MAC protocol in IEEE 802.11 wireless LANs. By simulations, we compare the performances of IEEE 802.11 wireless LANs with the optimal and random frame aggregation levels. Compared with the random frame aggregation level, the optimal frame aggregation level significantly improves the performance of IEEE 802.11 wireless LANs.

A Trend to Next-Generation Wireless LAN and Standardization Activity in IEEE 802.11 (차세대무선랜 기술 및 표준화 동향)

  • Lee, Je-Heon;Lee, Seok-Gyu
    • Electronics and Telecommunications Trends
    • /
    • v.23 no.3
    • /
    • pp.19-28
    • /
    • 2008
  • 2007년 3월부터 WFA에서 시작된 "Wi-Fi CERTIFIED(TM)802.11n Draft 2.0" 인증을 통해 현재까지 180가지가 넘는 제품이 출시되고 있는 가운데 이러한 시장의 상황을 반영하듯 여러 매체를 통해 IEEE 802.11n이 2008년 핫이슈로 등장하고 있다. 하지만 차세대무선통신의 기술적인 로드맵을 선도하고 있는 ITU-R WP8F의 IMT-Advanced에서 요구하고 있는 보행시 1Gbps까지 가능하게 하는 기술을 2010년까지 제공한다는 측면에서는 IEEE 802.11n의 성능이 못 미치는 게 사실이며, 이러한 상황을 반영해 IEEE 802.11 내부에서 IEEE 802.11n 후속으로 보행시 Gbps급의 전송 속도를 지원하는 새로운 기술에 대한 표준화 작업에 대한 논의가 꾸준히 있어 왔고, 그 결과 2007년 5월 정식으로 이를 위한 Study Group이 만들어져 작업에 들어갔다. 본 고에서는 이러한 IEEE 802.11에서의 표준화 활동을 중심으로 차세대무선랜에 대한 응용분야, 관련 기술, 표준화 작업 내용에 대해 살펴보고자 한다.

Modeling and Performance Analysis of Finite Load 802.11 WLAN with Packet Loss (패킷 손실을 갖는 유한 로드 802.11 무선 랜의 모델링과 성능분석)

  • Choi, Chang-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.249-257
    • /
    • 2005
  • A Markov model for the IEEE 802.11 standard which is the most widely deployed wireless LAN protocol, is designed and the channel throughput is evaluated. The DCF of 802.11, which is based on CSMA/CA protocol, coordinates transmissions onto the shared communication channel. In this paper, under a finite load traffic condition and the assumption of packet loss after the final backoff stage. We present an algorithm to find the transmission probability and derive the formula for the channel throughput. The proposed model is validated through simulation and is compared with the case without packet losses.

  • PDF

Access delay and packet delay of EDCA in IEEE 802.11e wireless network (IEEE 802.11e EDCA 무선랜의 매체 접속 지연 시간 및 정상 상태에서의 패킷 지연 분석)

  • Lee, Yu-Tae;Jang, Jong-Min;Lee, Key-Sang;Kim, Dong-Il;Kim, Chang-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1420-1426
    • /
    • 2008
  • This paper derives medium access delay of each AC(Access Category) in a stationary station using inter-departure time of IEEE 802.11e WLAN(Wireless LAN). Inter-departure time of IEEE 802.11e WLAN is obtained using saturation throughput of IEEE 802.11e WLAN which was the topic of our prior work. By using a simple queueing model, we evaluate mean queue length and mean delay for each AC on stationary condition. We calculate performance of each AC using this simple model and validate results using simulation.

QoS-Oriented Handoff Algorithm in IEEE 802.11 Wireless LAN (IEEE 802.11 무선랜에서 서비스 질(QoS) 지향적인 핸드오프 알고리즘에 관한 연구)

  • Choi Haeng-Keol;Kim Il-Hwan;Seo Seung-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6B
    • /
    • pp.338-348
    • /
    • 2005
  • Currently, IEEE 802.11 Wireless LAN (WLAN) is rising as the most popular means for the broadband wireless access network. In this thesis, we propose a QoS(Quality of Service)-Oriented mechanism using handshaking method of scanning phase in IEEE 802.11 handoff. In conventional process for handoff, the major criterion to select the best AP(Access Point) among candidates is normally based on the RSS(Received Signal Strength), which does not always make the selected network guarantee the maximum achievable performance. Even though the link quality with a neighboring AP is excellent, the AP may not be a good candidate to handoff to simply because MAC(Medium Access Control) protocol of IEEE 802.11 standard is contention-based such as CSMA/CA. Therefore, if we apply network level information to AP selection criteria, we can achieve better handoff efficiency rather than before. The analysis and simulation results applied to our new mechanism show clearly better performance than AP selection based on traditional handoff method.

On the Impact of Channel Sensing Methods to IEEE 802.15.4 Performances under IEEE 802.11b Interference

  • Shin, Soo-Young;Park, Hong-Seong
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.301-307
    • /
    • 2008
  • In this paper, the impact of channel sensing methods to IEEE 802.15.4 under the interference of IEEE 802.11b are analyzed. Two different channel sensing methods, energy detection and carrier sense, are considered. An average transmission delay, a throughput, and a power drain rate are used as performance measures. Those performance measures of IEEE 802.15.4 under the interference of IEEE 802.11b are analyzed mathematically. The simulation results are shown to validate the analytic results.

A new MAC protocol to improve a performance in IEEE 802.11 wireless LANs (IEEE 802.11 무선 랜의 성능 향상을 위한 새로운 MAC프로토콜)

  • Hwang, Gyung-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.759-764
    • /
    • 2009
  • A new backoff scheme for infrastructure mode in IEEE 802.11 wireless LANs is proposed to improve a performance. Each station generates a unique backoff number using total number of stations, fairness parameter included in beacon frame and an user's ID that is assigned by AP. The station sends a packet after its own backoff number of idle slots, which makes a collision free access among stations within AP's coverage. The proposed method shows better performance in the view of channel utilization and packet delay than an original IEEE 802.11 CSMA/CA backoff scheme.