• Title/Summary/Keyword: 8-Oxoguanine

Search Result 15, Processing Time 0.02 seconds

Suppressed DNA Repair Mechanisms in Rheumatoid Arthritis

  • Lee, Sang-Heon;Firestein, Gary S
    • IMMUNE NETWORK
    • /
    • v.2 no.4
    • /
    • pp.208-216
    • /
    • 2002
  • Background: Reactive oxygen and nitrogen are produced by rheumatoid arthritis (RA) synovial tissue and can induce mutations in key genes. Normally, this process is prevented by a DNA mismatch repair (MMR) system that maintains sequence fidelity. Key members of the MMR system include MutS${\alpha}$ (comprised of hMSH2 and hMSH6), which can sense and repair single base mismatches and 8-oxoguanine, and MutS${\beta}$ (comprised of hMSH2 and hMSH3), which repairs longer insertion/deletion loops. Methods: To provide further evidence of DNA damage, we analyzed synovial tissues for microsatellite instability (MSI). MSI was examined by PCR on genomic DNA of paired synovial tissue and peripheral blood cells (PBC) of RA patients using specific primer sequences for 5 key microsatellites. Results: Surprisingly, abundant MSI was observed in RA synovium compared with osteoarthritis (OA) tissue. Western blot analysis of the same tissues for the expression of MMR proteins demonstrated decreased hMSH6 and increased hMSH3 in RA synovium. To evaluate potential mechanisms of MMR regulation in arthritis, fibroblast-like synoviocytes (FLS) were isolated from synovial tissues and incubated with the nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP). Western blot analysis demonstrated constitutive expression of hMSH2, 3 and 6 in RA and OA FLS. When FLS were cultured with SNAP, the RA synovial pattern of MMR expression was reproduced (high hMSH3, low hMSH6). Conclusion: Therefore, oxidative stress can relax the DNA MMR system in RA by suppressing hMSH6. Decreased hMSH6 can subsequently interfere with repair of single base mutations, which is the type observed in RA. We propose that oxidative stress not only creates DNA adducts that are potentially mutagenic, but also suppresses the mechanisms that limit the DNA damage.

Single Nucleotide Polymorphisms of DNA Base-excision Repair Genes (APE1, OGG1 and XRCC1) Associated with Breast Cancer Risk in a Chinese Population

  • Luo, Hao;Li, Zheng;Qing, Yi;Zhang, Shi-Heng;Peng, Yu;Li, Qing;Wang, Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1133-1140
    • /
    • 2014
  • Altered DNA repair capacity can result in increased susceptibility to cancer. The base excision repair (BER) pathway effectively removes DNA damage caused by ionizing radiation and reactive oxidative species (ROS). In the current study, we analyzed the possible relation of polymorphisms in BER genes, including 8-oxoguanine DNA glycosylase (OGG1), apurinic/apyrimidinic endonuclease 1 (APE1), and X-ray repair cross-complementing group 1 protein (XRCC1), with breast cancer risk in Chinese Han women. This case-control study examined 194 patients with breast cancer and 245 cancer-free hospitalized control subjects. Single nucleotide polymorphisms (SNPs) of OGG1 (Ser326Cys), XRCC1 (Arg399Gln), and APE1 (Asp148Glu and -141T/G) were genotyped and analyzed for their association with breast cancer risk using multivariate logistic regression models. We found that XRCC1 Arg399Gln was significantly associated with an increased risk of breast cancer. Similarly, the XRCC1 Gln allele was significantly associated with an elevated risk in postmenopausal women and women with a high BMI (${\geq}24kg/m^2$). The OGG1 Cys allele provided a significant protective effect against developing cancer in women with a low BMI (< $24kg/m^2$). When analyzing the combined effects of these alleles on the risk of breast cancer, we found that individuals with ${\geq}2$ adverse genotypes (XRCC1 399Gln, APE1 148Asp, and OGG1 326Ser) were at a 2.18-fold increased risk of breast cancer (P = 0.027). In conclusion, our data indicate that Chinese women with the 399Gln allele of XRCC1 have an increased risk of breast cancer, and the combined effects of polymorphisms of BER genes may contribute to tumorigenesis.

Association of DNA Base-excision Repair XRCC1, OGG1 and APE1 Gene Polymorphisms with Nasopharyngeal Carcinoma Susceptibility in a Chinese Population

  • Li, Qing;Wang, Jian-Min;Peng, Yu;Zhang, Shi-Heng;Ren, Tao;Luo, Hao;Cheng, Yi;Wang, Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5145-5151
    • /
    • 2013
  • Background: Numerous carcinogens and reactive oxygen species (ROS) may cause DNA damage including oxidative base lesions that lead to risk of nasopharyngeal carcinoma. Genetic susceptibility has been reported to play a key role in the development of this disease. The base excision repair (BER) pathway can effectively remove oxidative lesions, maintaining genomic stability and normal expression, with X-ray repair crosscomplementing1 (XRCC1), 8-oxoguanine glycosylase-1 (OGG1) and apurinic/apyimidinic endonuclease 1 (APE1) playing important roles. Aims: To analyze polymorphisms of DNA BER genes (OOG1, XRCC1 and APE1) and explore their associations, and the combined effects of these variants, with risk of nasopharyngeal carcinoma. Materials and Methods: We detected SNPs of XRCC1 (Arg399Gln), OGG1 (Ser326Cys), APE1 (Asp148Glu and -141T/G) using the polymerase chain reaction (PCR) with peripheral blood samples from 231 patients with NPC and 300 healthy people, furtherly analyzing their relations with the risk of NPC in multivariate logistic regression models. Results: After adjustment for sex and age, individuals with the XRCC1 399Gln/Gln (OR=1.96; 95%CI:1.02-3.78; p=0.04) and Arg/Gln (OR=1.87; 95%CI:1.29-2.71; p=0.001) genotype variants demonstrated a significantly increased risk of nasopharyngeal carcinoma compared with those having the wild-type Arg/Arg genotype. APE1-141G/G was associated with a significantly reduced risk of NPC (OR=0.40;95%CI:0.18-0.89) in the smoking group. The OR calculated for the combination of XRCC1 399Gln and APE1 148Gln, two homozygous variants, was significantly additive for all cases (OR=2.09; 95% CI: 1.27-3.47; p=0.004). Conclusion: This is the first study to focus on the association between DNA base-excision repair genes (XRCC1, OGG1 and APE1) polymorphism and NPC risk. The XRCC1 Arg399Gln variant genotype is associated with an increased risk of NPC. APE1-141G/G may decrease risk of NPC in current smokers. The combined effects of polymorphisms within BER genes of XRCC1 399Gln and APE1 148Gln may contribute to a high risk of nasopharyngeal carcinoma.

Antioxidant potential of Sargassum horneri extracts in the liver of mice with PM-induced asthma (미세먼지 흡입 과민성 천식 마우스의 간 조직에서 괭생이모자반 추출물의 항산화 효능)

  • Kim, Hyo Jin;Kim, Areum;Herath, Kalahe Hewage Iresha Nadeeka Madushani;Mihindukulasooriya, Suyama Prasansali;Jeon, You-Jin;Kim, Hyun Jung;Jee, Youngheun
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.535-543
    • /
    • 2021
  • Particulate matter (PM) causes oxidative stress and can rapidly diffuse from the lung to the blood and accumulate in the liver when inhaled. Natural antioxidants can be used to protect against oxidative stress caused by PM. Sargassum horneri, a brown seaweed, possesses antioxidative activity and is a good source of functional foods. Therefore, this study investigated the antioxidant potential of S. horneri extract (SHE) in the livers of PM-induced asthmatic mice. PM inhalation triggered lipid peroxidation and oxidative stress, and SHE treatment attenuated malondialdehyde in the liver of mice with PM-induced asthma. Furthermore, SHE mitigated the increase in catalase activity. Importantly, SHE reduced the activity of 8-oxoguanine glycosylase (OGG1), a DNA repair enzyme. These results suggest that SHE has antioxidant potential for moderating PM-induced oxidative stress and DNA damage in the liver of asthmatic mice.

Effects of taurine and ginseng extracts on energy metabolism during exercise and their anti-fatigue properties in mice

  • Kim, Jisu;Beak, Suji;Ahn, Sanghyun;Moon, Byung Seok;Kim, Bom Sahn;Lee, Sang Ju;Oh, Seung Jun;Park, Hun-Young;Kwon, Seung Hae;Shin, Chul Ho;Lim, Kiwon;Lee, Kang Pa
    • Nutrition Research and Practice
    • /
    • v.16 no.1
    • /
    • pp.33-45
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Ginseng extract (GSE) and taurine (TR) are widely used antifatigue resources in functional foods. However, the mechanism underlying the antifatigue effects of GSE and TR are still unclear. Hence, we investigated whether GSE and TR have synergistic effects against fatigue in mice. MATERIALS/METHODS: L6 cells were treated with different concentrations of TR and GSE, and cell viability was determined using 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium. Oxidative stress was analyzed by immunocytochemistry using MitoTrackerTM Red FM and an anti-8-oxoguanine antibody. Respiratory gas analysis was performed to investigate metabolism. Expression of an activated protein kinase was analyzed using immunohistochemistry. Gene expression of cluster of differentiation 36 and pyruvate dehydrogenase lipoamide kinase isozyme 4 was measured using reverse transcription-polymerase chain reaction. Mice were orally administered TR, GSE, or their combination for 30 days, and then fatigue-related parameters, including lactate, blood urea nitrogen, and glycogen, were measured after forced swimming. RESULTS: TR and GSE reduced oxidative stress levels in hydrogen peroxide-stimulated L6 cells and enhanced the oxygen uptake and lipid metabolism in mice after acute exercise. After oral administration of TR or GSE for 30 days, the fatigue-related parameters did not change in mice. However, the mice administered GSE (400 mg/kg/day) alone for 30 days could swim longer than those from the other groups. Further, no synergistic effect was observed after the swimming exercise in mice treated with the TR and GSE combination for 30 days. CONCLUSIONS: Taken together, our data suggest that TR and GSE may exert antifatigue effects in mice after acute exercise by enhancing oxygen uptake and lipid oxidation.