• Title/Summary/Keyword: 7DOF Model

Search Result 52, Processing Time 0.024 seconds

Accuracy Analysis of Optimal Trajectory Planning Methods Based on Function Approximation for a Four-DOF Biped Walking Model

  • Peng Chunye;ONO Kyosuke
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.452-460
    • /
    • 2005
  • Based on an introduced optimal trajectory planning method, this paper mainly deals with the accuracy analysis during the function approximation process of the optimal trajectory planning method. The basis functions are composed of Hermit polynomials and Fourier series to improve the approximation accuracy. Since the approximation accuracy is affected by the given orders of each basis function, the accuracy of the optimal solution is examined by changing the combinations of the orders of Hermit polynomials and Fourier series as the approximation basis functions. As a result, it is found that the proper approximation basis functions are the $5^{th}$ order Hermit polynomials and the $7^{th}-10^{th}$ order of Fourier series.

Vibration Suppression Control of Constrained Spatial Flexible Manipulators (구속받는 3차원 유연 매니퓨레이터의 진동억제 제어)

  • 김진수;우찌야마마사루
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.189-195
    • /
    • 2000
  • For free motions, vibration suppression of flexible manipulators has been one of the hottest research topics. However, for constrained motions, a little effort has been devoted for vibration suppression control. Using the dependency of elastic deflections of links on contact force under static conditions, vibrations for constrained planar two-link flexible manipulators have been suppressed successfully by controlling the contact force. However, for constrained spatial multi-link flexible manipulators, the vibrations cannot be suppressed by only controlling the contact force. So, the aim of this paper is to clarify the vibration mechanism of a constrained, multi-DOF, flexible manipulator and to devise the suppression method. We apply a concise hybrid position/force control scheme to control a flexible manipulator modeled by lumped-parameter modeling method. Finally, a comparison between simulation and experimental results is presented to show the performance of our method.

  • PDF

A Lane-change Collision Avoidance Algorithm for Autonomous Vehicles and HILS(Hardware-In-the-Loop Simulation) Test (자율주행 차량의 충돌회피 차선변경 제어 알고리즘 개발과 HILS 시험)

  • 류제하;김종협
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.240-248
    • /
    • 1999
  • This paper presents a lane-change collision avoidance control algorithm for autonomous vehicles that will be used in AHS(Automated Highway System). In the proposed control algorithm, nominal control inputs are generated by solving the inverse vehicle dynamic equations of motion for a lane-change maneuver. In addition, a corrective steering input from preview as well as DYC (Direct Yaw Moment Control) may be included to reduce unpredictable errors and to insure yaw directional stability, respectively. The performance of the algorithm is evaluated with an ABS HILS system which consist of 17 DOF vehicle model and real ABS hardware parts. The HILS simulation results show that the proposed algorithm may be used for emergency lane-change maneuvers for autonomous vehicles.

  • PDF

Dynamics modeling of a semi-submersible autonomous underwater vehicle with a towfish towed by a cable

  • Park, Jinmo;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.409-425
    • /
    • 2015
  • In this paper, we employ a dynamics modeling method for investigating a multi-body dynamics system of semi-submersible autonomous underwater vehicles consisting of a towing vehicle operated near the water surface, a tow cable, and a towfish. The towfish, which is towed by a marine cable for the purposes of exploration or mine hunting, is modeled with a Six-Degree-of-Freedom (6-DOF) equation of motion that reflects its hydrodynamics characteristics. The towing cable, which can experience large displacements and deformations, is modeled using an absolute nodal coordinate formulation. To reflect the hydrodynamic characteristics of the cable during motion, the hydrodynamic force due to added mass and the drag force are imposed. To verify the completeness of the modeling, a few simple numerical simulations were conducted, and the results confirm the physical plausibility of the model.

A Study on the Development of a Simulator for a Multimotor driven Electric Vehicle (Multimotor 구동방식 전기자동차 운전제어 시뮬레이터 개발에 관한 연구)

  • Kim, Byung-Ki;Kim, Jae-Hwa;Chang, Tae-Gyu;Park, Jung-Woo;Ha, Hoi-Do
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1173-1175
    • /
    • 1996
  • This paper describes a driving simulator for the multimotor driven electric vehicle. The electric vehicle is simulated by a 7-DOF(degree of freedom) model and a couple of developed split torque control algorithms are tested with the simulator to illustrate and verify its normal operation.

  • PDF

Scientific Approach to Fashion Websites Using Eye Trackers

  • Lee, Seunghee;Choi, Jung Won
    • Journal of Fashion Business
    • /
    • v.24 no.6
    • /
    • pp.63-79
    • /
    • 2020
  • This study analyze consumers' unconscious visual attention to color and images of internet shopping malls by using eye-tracking method. Twenty-nine participants, including 15 females and 14 males, participated. The average ages of the male and female participants were 27.3 years and 27.7 years, respectively. Ten images of five layouts (multi-composition images, single-model images, gender-composed images, videos, and moving banner images) of internet shopping malls were shown on an eye-tracker computer screen. Quantitative analyses of the eye-tracking responses were conducted. SPSS was used to analyze the descriptive characteristics and to conduct an independent-sample t-test, along with an ANOVA. The data analysis showed that the image area generally had the shortest time to first fixation (TFF), the longest duration of fixation (DOF), the highest number of fixations (NOF), and the highest numbers of revisits(NOR).Notably, visual attention towards female models was high among various images. The results can be used to improve credibility and design online shopping layout with a scientific evidence that helps consumers through their purchase decisions.

Active Vibration Control of a Precision Equipment on Flying Vehicle Structure (비행 구조물에 탑재된 정밀 기기의 능동 진동 제어)

  • Lee, Jae-Hong;Yu, Jin-Hyeong;Park, Yeong-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1912-1921
    • /
    • 1999
  • The equipments mounted on guided-missile undertake heavy vibrational disturbance. Sometimes the equipments mounted on guided-missile go wrong so that the guided-missile flies over unintended place. For the vibration isolation of the equipments mounted on guided-missile, active vibration control was performed. In the case of active vibration technique, the stiffness matrix and the mass matrix are derived based on FEM (ANSYS5.0). Model reduction was carried out and, as a result, we got 7 DOF mass and stiffness matrix. For the sake of FEM model identification, modal experiment was carried out. With the help of Sensitivity Analysis, the natural frequencies of FEM were tuned to those of Experiment. In this work, the Sky Hook and the LQG control theory were adopted for v iteration control using stacked piezoactuator. Experiments were performed with changing excitation frequency from 10 Hz upto 200 Hz and we got frequency response function of guided-missile equipments. The magnitude of 3rd mode of guided-missile equipments is 8.6 % that of Uncontrolled in Skyhook controller and is 3.4 % that of uncontrolled in LQG controller.

Trajectory Generation and Dynamic Control of Planar Biped Robots With Curved Soles

  • Yeon Je-Sung;Kwon O-Hung;Park Jong-Hyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.602-611
    • /
    • 2006
  • This paper proposes a locomotion pattern and a control method for biped robots with curved soles. First, since the contact point of a supporting leg may arbitrarily move back and forth on the ground, we derived the desired trajectory from a model called the Moving. Inverted Pendulum Model (MIPM) where the Zero Moment Point (ZMP) exists at the supporting point and can be moved intentionally. Secondly, a biped robot with curved soles is an under-actuated system since the supporting point contacting with a point on the ground has no actuator during the single supporting phase. Therefore, this paper proposes a computed-torque control for this under-actuated system using decoupled dynamic equations. A series of computer simulations with a 7-DOF biped robot with curved soles shows that the proposed walking pattern and control method are effective and allow the biped robot to walk fast and stably, and move more like human beings. Also, it is shown that the curved sole shape has superior energy consumption compared to flat soles, and greater efficiency in ascending and descending the stairs.

DYNAMICS OF AN ACTIVELY GUIDED TRACK INSPECTION VEHICLE

  • Zeng, C.C.;Bao, J.H.;Zhang, J.W.;Li, X.H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.777-784
    • /
    • 2006
  • The lateral dynamic behaviours of a track inspection vehicle with laterally guided system are studied for the safety and comfort. A 10-DOF dynamic model is proposed counting for lateral and yaw motions. The equations for motions of the vehicle running on curved tracks at a constant speed are presented. It is shown by simulation that lateral guiding forces applied to the guiding wheels on the inner side of the track increase in a larger scale in comparison with those on the outer side when the vehicle passes through curved tracks with cant, and the front guiding spring forces is larger than the rears. Lateral vibrations due to yaw motions of the vehicle take place when the vehicle runs through curved tracks. Finally, effect of the lateral guidance on the vehicle dynamics is also examined and advantages of such a guiding system are discussed in some details. An optimal guided control is applied to restrain the lateral and yaw motions. The comparisons between the active and passive guidance explain the effect of the active control approaches.

Numerical Study on Energy Absorption of a Floater for Design of Wave Energy Convertor in Ocean (해양 파력 발전 시스템 설계를 위한 부유체 에너지 흡수에 관한 기초연구)

  • Li, Kui Ming;Parthasarathy, Nanjundan;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.635-644
    • /
    • 2012
  • In order to design a wave energy generating system, a 6-DOF analysis technique is applied to the three-Dimensional CFD analysis on of a floating body and the behavior is interpreted according to the nature of the incoming wave. A wave period of 5.5s & amplitude of 0.57m from Marado is chosen. 12 case of natural pitching period from 1.25 to 2.8s has been modeled. The relation between tuning factor & pitch angle for the waves generated is compared to analyze the effects of energy absorption variables, namely mass moment of inertia, angular velocity and angular acceleration. From the results obtained, we conclude that model L is the maximum power absorbed, 6kW approximately. A maximum pitch angle of 1.91 degree was attained by Model F, and the maximum displacement of nearly 0.7m was attained by Model L among models D, F and L.