• Title/Summary/Keyword: 7 DOF

Search Result 141, Processing Time 0.036 seconds

Design of Multiple Sliding Surface Control System for a Quadrotor Equipped with a Manipulator (매니퓰레이터 장착 쿼드로터를 위한 다중 슬라이딩 평면 제어의 시스템 설계)

  • Hwang, Nam Eung;Park, Jin Bae;Choi, Yoon Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.502-507
    • /
    • 2016
  • In this paper, we propose a tracking control method for a quadrotor equipped with a 2-DOF manipulator, which is based on the multiple sliding surface control (MSSC) method. To derive the model of a quadrotor equipped with a 2-DOF manipulator, we obtain the models of a quadrotor and a 2-DOF manipulator based on the Lagrange-Euler formulation separately - and include the inertia and the reactive torque generated by a manipulator when these obtained models are combined. To make a quadrotor equipped with a manipulator track the desired path, we design a double-loop controller. The desired position is converted into the desired angular position in the outer controller and the system's angle tracks the desired angular position through the inner controller based on the MSSC method. We prove that the position-tracking error asymptotically converges to zero based on the Lyapunov stability theory. Finally, we demonstrate the effectiveness of the proposed control system through a computer simulation.

Determination of global ice loads on the ship using the measured full-scale motion data

  • Lee, Jae-Man;Lee, Chun-Ju;Kim, Young-Shik;Choi, Gul-Gi;Lew, Jae-Moon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.301-311
    • /
    • 2016
  • This paper describes the whole procedures to determine ice-induced global loads on the ship using measured full-scale data in accordance with the method proposed by the Canadian Hydraulics Centre of the National Research Council of Canada. Ship motions of 6 degrees of freedom (dof) are found by processing the commercial sensor signals named Motion Pak II under the assumption of rigid body motion. Linear accelerations as well as angular rates were measured by Motion Pak II data. To eliminate the noise of the measured data and the staircase signals due to the resolution of the sensor, a band pass filter that passes frequencies between 0.001 and 0.6 Hz and cubic spline interpolation resampling had been applied. 6 dof motions were computed by the integrating and/or differentiating the filtered signals. Added mass and damping force of the ship had been computed by the 3-dimensional panel method under the assumption of zero frequency. Once the coefficients of hydrodynamic and hydrostatic data as well as all the 6 dof motion data had been obtained, global ice loads can be computed by solving the fully coupled 6 dof equations of motion. Full-scale data were acquired while the ARAON rammed old ice floes in the high Arctic. Estimated ice impact forces for two representative events showed 7e15 MN when ship operated in heavy ice conditions.

Design the Guidance and Control for Precision Guidance Munitions using Reference Trajectory (기준궤적을 이용한 탄도수정탄 유도제어기 설계)

  • Sung, Jae min;Han, Eu Jene;Song, Min Sup;Kim, Byoung Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.181-188
    • /
    • 2015
  • This paper present, the result of the guidance and control law for a course correction munitions(CCM) with 2sets of canards positioned in the rotating nose section. The nonlinear simulation model of the CCM was developed based on 7DOF equation of motion. The ability of correcting position was verified by open-loop control input with nonlinear model. The guidance and control command was constructed by reference trajectory which can be obtained with no control. Finally, the performance of the guidance and control law was evaluated through Monte-carlo simulation. The CEP(Circular Error Probability) was obtained by considering the errors in muzzle velocity, aerodynamic coefficient, wind, elevation and azimuth angle and density.

A Research on the Design and Development of a Robot System with Multi-fingered Hands (다지 로봇 시스템의 설계 및 개발에 관한 연구)

  • Lee, Ho-Youn;Lee, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.138-141
    • /
    • 2002
  • In this paper, we developed a Master Hand which has 20 potentiometer for getting grasping data of human hands, a Slave Hand which has 20 DOF and five fingers with servo-motors, and a controller for the 7 DOF Arm with Multi-fingered hands. And, we programmed a 3D simulation S/W which controls a Robot System with Multi-fingered hands. A developed Robot System showed good performance in the grasping of an object with known position and shape.

  • PDF

COMPLEX STOCHASTIC WHEELBASE PREVIEW CONTROL AND SIMULATION OF A SEMI-ACTIVE MOTORCYCLE SUSPENSION BASED ON HIERARCHICAL MODELING METHOD

  • Wu, L.;Chen, H.L.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.749-756
    • /
    • 2006
  • This paper presents a complex stochastic wheelbase preview control method of a motorcycle suspension based on hierarchical modeling method. As usual, a vehicle suspension system is controlled as a whole body. In this method, a motorcycle suspension with five Degrees of Freedom(DOF) is dealt with two local independent 2-DOF suspensions according to the hierarchical modeling method. The central dynamic equations that harmonize local relations are deduced. The vertical and pitch accelerations of the suspension center are treated as center control objects, and two local semi-active control forces can be obtained. In example, a real time Linear Quadratic Gaussian(LQG) algorithm is adopted for the front suspension and the combination of the wheelbase preview and LQG control method is designed for the rear suspension. The results of simulation show that the control strategy has less calculating time and is convenient to adopt different control strategies for front and rear suspensions. The method proposed in this paper provides a new way for the vibration control of multi-wheel vehicles.

Probabilistic Characteristics of Dynamic Responses of Highway Bridges (도로교동적응답의 확률적 특성에 관한 연구)

  • 김상효;김종학;윤성호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.8-14
    • /
    • 1997
  • The dynamic responses of highway bridges are varying depending on the features of either traveling vehicles or bridges. In this study, the probabilistic characteristics of dynamic amplification factors of highway bridges due to traveling heavy vehicles have been examined through analytical simulation processes. The truck with tandem axle and tractor with semitrailer are selected as the representative heavy vehicles, which are modeled with three dimensional 7-DOF and 12-DOF models, respectively. The analytical results have been compared with the experimental results of dynamic loading tests and the validity of the analytical models has been examined. Parametric studies on the means and extreme values of amplification factors have been performed with various traffic conditions such as vehicle types, vehicle weights, surface profiles, vehicle velocity, etc.

  • PDF

Control and Evaluation of a New 6-DOF Haptic Device Using a Parallel Mechanism (병렬구조를 이용한 새로운 6자유도 역감제시 장치의 제어 및 평가)

  • Yun, Jeong-Won;Ryu, Je-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.160-167
    • /
    • 2001
  • This paper presents control and evaluation of a new haptic device with a 6-DOF parallel mechanism for interfacing with virtual reality. This haptic device has low inertial, high bandwidth compactness, and high output force capability mainly due to of base-fixed motors. It has also wider orientation workspace mainly due to a RRR type spherical joint. A control method is presented with gravity compensation and with force feedback by an F/T sensor to compensate for the effects of unmodeled dynamics such as friction and inertia. Also, dynamic performance has been evaluated by experiments. for force characteristics such as maximum applicable force, static-friction force, minimum controllable force, and force bandwidth Virtual wall simulation with the developed haptic device has been demonstrated.

  • PDF

Integrated dynamics modeling for supercavitating vehicle systems

  • Kim, Seonhong;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.346-363
    • /
    • 2015
  • We have performed integrated dynamics modeling for a supercavitating vehicle. A 6-DOF equation of motion was constructed by defining the forces and moments acting on the supercavitating body surface that contacted water. The wetted area was obtained by calculating the cavity size and axis. Cavity dynamics were determined to obtain the cavity profile for calculating the wetted area. Subsequently, the forces and moments acting on each wetted part-the cavitator, fins, and vehicle body-were obtained by physical modeling. The planing force-the interaction force between the vehicle transom and cavity wall-was calculated using the apparent mass of the immersed vehicle transom. We integrated each model and constructed an equation of motion for the supercavitating system. We performed numerical simulations using the integrated dynamics model to analyze the characteristics of the supercavitating system and validate the modeling completeness. Our research enables the design of high-quality controllers and optimal supercavitating systems.

Position and Vibration Control of a Spatial Redundant Flexible Manipulator by using Pseudo-inverse of Jacobian (유사 역행렬을 이용한 여유자유도 3차원 유연 매니퓰레이터의 위치 및 진동제어)

  • Kim, Jin-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.66-72
    • /
    • 2001
  • In this paper, by using pseudo-inverse matrix of the spatial redundant flexible manipulators, a position control method and its effect in vibration suppression was presented. Vibration suppression control was developed using lumped mass spring model of the flexible manipulators. With 2 elastic links and 7 rotory joint manipulator ADAM, (1)position control for no redundancy, and (2)position control for one redundant DOF(degree of freedom) were tested. The objective of this experiment is to show the effect of position control, using pseudo-inverse matrix. toward the improvement of operation, and at the same time, to reduce the vibration of the link and the magnitude of the joint torque.

  • PDF