• Title/Summary/Keyword: 7 DOF

Search Result 141, Processing Time 0.021 seconds

Effect of Drinking Water Treatment by DOF(Dissolved Ozone Flotation) System (DOF 공정에 의한 정수처리 효과)

  • Lee, Byoung-Ho;Song, Won-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.743-750
    • /
    • 2008
  • In water treatment plant the Dissolved Ozone Flotation(DOF) System may be employed because this system has various abilities, such that it can remove SS using microbubbles, and it can exert strong oxidation power in removing taste and odor, color, and microbial agents. In order to investigate effectiveness of the DOF system in water treatment, removal characteristics of various water quality parameters were observed depending on the different levels of ozone concentrations. Removal efficiencies of water quality parameters in DOF system were compared with those in DAF(Dissolved Air Flotation) system and in CGS(Conventional Gravity Settling) system. Optimum ozone dose obtained in the pilot experiments was 2.7 mg/L. With increasing ozone dose higher than 2.7 mg/L, removal rates of turbidity, KMnO$_4$ consumption, UV$_{254}$ absorbance, and TOC were reversely lowered. High concentration of ozone dissociate organic matter in water, so that increasing dissolved organic level in effluent. Removal rates of water quality parameters at optimum ozone dose were obtained, such that removal rates of turbidity, KMnO$_4$ consumption, TOC, and UV$_{254}$ asorbance were 88.9%, 62.9%, 47%, and 77.3% respectively. Removal rate of THMFP was 51.6%. For all the parameters listed above, the DOF system was more effective than the DAF system or the CGS system. It is found that the DOF system may be used in advanced water treatment not only because the DOF system is more efficient in removing water quality parameters than the existing systems, but because the DOF system is also required smaller area than the CGS system for the treatment plant.

Inverse Kinematics Analysis of 7-DOF Anthropomorphic Robot Arm using Conformal Geometric Algebra (등각 기하대수를 이용한 7자유도 로봇 팔의 역기구학 해석)

  • Kim, Je-Seok;Ji, Yong-Kwan;Park, Jahng-Hyon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1119-1127
    • /
    • 2012
  • In this paper, we present an inverse kinematics of a 7-dof Anthropomorphic robot arm using conformal geometric algebra. The inverse kinematics of a 7-dof Anthropomorphic robot arm using CGA can be computed in an easy way. The geometrically intuitive operations of CGA make it easy to compute the joint angles of a 7-dof Anthropomorphic robot arm which need to be set in order for the robot to reach its goal or the positions of a redundant robot arm's end-effector. In order to choose the best solution of the elbow position at an inverse kinematics, optimization techniques have been proposed to minimize an objective function while satisfying the euler-lagrange equation.

Characteristics of Chatter Stability Lobe in 2-DOF Machining System (2-DOF 가공시스템의 채터로브 거동연구)

  • Lee, Hyuk;Chin, Dohun;Yoon, Moonchul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.1-7
    • /
    • 2019
  • A chatter lobe analysis is frequently used to look at the chatter state. Even if there is a lot of research on chatter, chatter lobe characteristics are not well defined. In this study, the chatter lobe behavior according to several variables of vibration mode is verified for further clarity. The dynamic variables of the chatter model are defined and their behaviors on chatter lobe boundary are analyzed in detail. In this sense, the chatter model with 2-DOF (2-DOF) was used to analyze chatter stability characteristics. The discussed results are satisfying and these can be used for the prediction of chatter existence in machining processes of 2-DOF systems in several revolution range. These analyses indicate a better agreement for predicting an appropriate stability lobe over a wide detailed range of critical depths of cut in machining operation. The results allow an excellent prediction of chatter according to various static and dynamic variables in machining states. The behavior of chatter dynamic variables in machining were also discussed in detail. All these results can also be applied to other machining processes by establishing a chatter model in a 2-DOF system.

Dynamics Analysis and Simulation of a Passive Suspension System Using 7 DOF Full Car Model (7 DOF 차량 모델을 이용한 자동차 현가장치 동력학 해석 및 시뮬레이션에 관한 연구)

  • 노태수;정길도;홍동표
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.31-41
    • /
    • 1997
  • Equations of motion for a 7 DOF full car model is developed in detail and used for the design of LQR based active suspension system. The frequency response to road disturbance input and the motion of a car passing unequal bumps were used to analyzed the dynamic characteristics of the 7 DOF full car with passive or active suspensions. The resulting linear equations of motion may be usefull in designing other types of active suspension.

  • PDF

Development of a Snake Robot with 2-DOF Actuator Modules (2 자유도 작동기 모듈로 구성된 뱀 로봇 개발)

  • Shin, Ho-Cheol;Jeong, Kyung-Min;Kwon, Jeong-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.697-703
    • /
    • 2011
  • This article describes a snake robot with 2-DOF actuator modules. The 2-DOF actuator modules make the snake robot move in the 3D space so that the snake robot can cross obstacles and rough terrain. Each 2-DOF actuator module is designed to have high torque output and an embedded controller. A cross bracket connecting the modules is designed be able to support the weight of two actuator modules. The developed snake robot shows 3-D motions such as side winding, standing/monitoring, and can climb in a narrow pipe with high torque modules. The snake robot moves fast with passive wheels in a plane while crossing obstacles.

Development of a 6-DOF Active Vibration Isolation System Using Voice Coil Motor (VCM을 이용한 6자유도 능동형 제진시스템 개발)

  • Gil, Hyeong-Gyeun;Kim, Kwang-San
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.637-643
    • /
    • 2010
  • The paper is about the development of 6-DOF active vibration isolation systems using VCM. Firstly, formulate the vertical 3-DOF mathematical model under eccentric load, and compare the model with the case in which the center of mass is located at the centroid. And then, complete the 6-DOF mathematical model by formulating the horizontal 3-DOF mathematical model. Find main parameters by comparing the result of the frequency response test with simulation result on the model. Finally, achieve the performance of vibration isolation by applying loop shaping approach & feedforward controller.

A Study of Advanced Spherical Motor for Improvement of Multi-DOF Motion

  • Park, Hyun-Jong;Cho, Su-Yeon;Ahn, Han-Woong;Lee, Ho-Jun;Won, Sung-Hong;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.926-931
    • /
    • 2012
  • Since robot industry growing, the machine that could move with multi-DOF has been studied in many industrial fields. Spherical motor is one of the multi-DOF machine that doesn't need gear for multi-DOF motion. Unlike conventional motor, spherical motor can not only rotate on the shaft axis (rotating motion), but tilt the shaft with 2-DOF motion (positioning motion). In the typical type of spherical motor, one coil took part in positioning motion and rotating motion at the same time. As the result, the control algorithm was complex. To solve this problem, this study proposed a novel type of coil on the stator. The coils were separated for positioning motion and rotating motion. Thus the linkage flux of rotating coil didn't be affected the positioning angle. In this paper, comparing the back-EMF of typical and novel type was conducted and the driving experiment was carried out as the positioning angle. From the experiment result, the performance of proposed spherical motor could be verified.

Geometrical Design Theory of a 6 DOF Vibration Absorber (6자유도 진동 흡진기의 기하적 설계 이론)

  • Jang Seon Jun;Choi Yong Je
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.191-199
    • /
    • 2005
  • Many researchers have been investigating the design of multi-mode absorption vibration absorber for multi degree-of-freedom (DOF) system. The approach taken to this problem has been to find the optimized constants of stiffness and damping for the given set of single-DOF absorbers or single multi-DOF absorber attached to a multi degree-of-freedom system. This paper presents a novel geometrical and direct design theory of a 6 DOF vibration absorber via screw theory. Theoretical development is demonstrated by a practical example in which the diagonal stiffness matrix is synthesized using rectangular configuration of springs. The performance of this absorber is simulated by modal analysis.

Inverse Kinematics Solution and Optimal Motion Planning for Industrial Robots with Redundancy (여유 자유도를 갖는 산업용 로봇의 역기구학 해석 및 최적 동작 계획)

  • Lee, Jong-Hwa;Kim, Ja-Young;Lee, Ji-Hong;Kim, Dong-Hyeok;Lim, Hyun-Kyu;Ryu, Si-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • This paper presents a method to optimize motion planning for industrial manipulators with redundancy. For optimal motion planning, first of all, particular inverse kinematic solution is needed to improve efficiency for manipulators with redundancy working in various environments. In this paper, we propose three kinds of methods for solving inverse kinematics problems; numerical and combined approach. Also, we introduce methods for optimal motion planning using potential function considering the order of priority. For efficient movement in industrial settings, this paper presents methods to plan motions by considering colliding obstacles, joint limits, and interference between whole arms. To confirm improved performance of robot applying the proposed algorithms, we use two kinds of robots with redundancy. One is a single arm robot with 7DOF and another is a dual arm robot with 15DOF which consists of left arm, right arm with each 7DOF, and a torso part with 1DOF. The proposed algorithms are verified through several numerical examples as well as by real implementation in robot controllers.