• Title/Summary/Keyword: 6FDA-DAM

Search Result 5, Processing Time 0.009 seconds

Gas Permeation Properties of Sulfonated 6FDA-based Polyimide Membranes (설폰화된 6FDA계 폴리이미드 막을 이용한 기체투과특성)

  • Rhim, Ji-Won;Yoon, Seok-Won;Lee, Byung-Seong;Lee, Bo-Sung;Cheong, Seong-Ihl
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.237-243
    • /
    • 2009
  • Polyimides synthesized by using 2,2'-bis(3,4-carboxylphenyl) hexafluoropropane dianhydride (6FDA) and 4,4'-diaminodiphenylmethane (DAM) were sulfonated according to reaction times, 5 min to 20 min. And the resulting polyimide membranes were investigated in terms of permeability and separation factor for $N_2$, $O_2$, and $CO_2$ gases. The introduction of bulky group, $-{SO_3}H$, leads to the decreases of both diffusivities and solubilities for all the range of reaction times. At 20 min of sulfonation, the diffusivity and solubility of $N_2$ decrease up to 21% and 26%, respectively. Overall separation efficiencies for $O_2/N_2$ and $CO_2/N_2$ increase as the reaction time increases to 20 min.

Effect of Long Time Physical Aging on Ultra Thin 6FDA-Based Polyimide Films Containing Carboxyl Acid Group (Carboxyl Acid Group을 포함한 6FDA-Based 폴리이미드 박막필름의 장시간 에이징에 따른 특성변화)

  • Im, Hyun-Gu;Kim, Joo-Heon;Lee, Hyuk-Soo;Kim, Tae-Min
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.335-342
    • /
    • 2007
  • The goal of this study is to investigate the effect of molecular structure modifications on the kinetics of physical aging of thin films formed from 6FDA-based polyimides with time. The permeability for 6FDA-based polyimide thin films containing carboxyl acid groups commonly decreased 20-50% after the isothermal aging and the selectivity gained anywhere from 10% to 30% while the rate of permeability loss on the change of polymer structure showed different reciprocal relationship between 6FDA-6FpDA based polyimides and 6FDA-DAM based polyimides. The Lorenz-Lorentz equation was used to relate changes in refractive index to densification and volume relaxation with aging time. The permeability as a function of aging time fits the expected form $P=Ae^{(-B/f)}$. The results matched well with the data for different polymer membranes.

Modeling Downstream Flood Damage Prediction Followed by Dam-Break of Small Agricultural Reservoir (농업용 소규모 저수지의 붕괴에 따른 하류부 피해예측 모델링)

  • Park, Jong-Yoon;Joh, Hyung-Kyung;Jung, In-Kyun;Jung, Kwan-Soo;Lee, Joo-Heon;Kang, Bu-Sik;Yoon, Chang-Jin;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.63-73
    • /
    • 2010
  • This study is to develop a downstream flood damage prediction model for efficient confrontation in case of extreme and flash flood by future probable small agricultural dam break situation. For a Changri reservoir (0.419 million $m^3$) located in Yongin city of Gyeonggi province, a dam break scenario was prepared. With the probable maximum flood (PMF) condition calculated from the probable maximum precipitation (PMP), the flood condition by dam break was generated by using the HEC-HMS (Hydrologic Engineering Center - Hydrologic Modeling System) model. The flood propagation to the 1.12 km section of Hwagok downstream was simulated using HEC-RAS (Hydrologic Engineering Center - River Analysis System) model. The flood damaged areas were generated by overtopping from the levees and the boundaries were extracted for flood damage prediction, and the degree of flood damage was evaluated using IDEM (Inundation Damage Estimation Method) by modifying MD-FDA (Multi-Dimensional Flood Damage Analysis) and regression analysis simple method. The result of flood analysis by dam-break was predicted to occurred flood depth of 0.4m in interior floodplain by overtopping under PMF scenario, and maximum flood depth was predicted up to 1.1 m. Moreover, for the downstream of the Changri reservoir, the total amount of the maximum flood damage by dam-break was calculated nearly 1.2 billion won by IDEM.

Characterization of Gas Permeation Properties of Polyimide Copolymer Membranes (공중합체 폴리이미드를 이용한 기체분리막의 특성평가)

  • Lee, Jung Moo;Lee, Myeong Geon;Kim, Se Jong;Koh, Hyung Chul;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.223-230
    • /
    • 2015
  • We synthesized novel polyimides with high gas permeability and selectivity for application of gas separation membrane. 2,2-bis(3,4-carboxylphenyl) hexafluoropropane dianhydride (6FDA) and two kinds of amines with high permeability and solubility were used to prepare the novel polymide. 2,4,6-Trimethyl-1,3-phenylenediamine (DAM) was used to improve gas permeability and 4,4-Methylenedianiline was used to improve the gas selectivity respectively. The polyimide copolymers were synthesized by commercial chemical imidization method using Triethylamine and Acetic anhydride and their average molecular weights were over 100,000 g/mol. The glass temperature (Tg) and the thermal degradation temperature were characterized using differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The synthesized copolymers showed high Tg over $300^{\circ}C$ and high thermal degradation temperature over $500^{\circ}C$. The gas permeation properties were measured by time-lag equipment. Although general polyimides showed very low gas permeability, synthesized polyimide copolymer showed high $O_2$ permeability of 10.1 barrer with high $O_2/N_2$ selectivity around 5.3. From this result, we confirm that these membranes have possibility to apply to gas separation membrane.

Gas Permeation Properties of Sulfonated 6FDA-Based Polyimide Membranes Exchanged with Metal Ions (금속이온이 치환된 설폰화된 6FDA계 폴리이미드 막의 기체 투과 특성)

  • Im, Hyeon-Soo;Lee, Byung-Seong;Lee, Bo-Sung;Yoon, Seok-Won;Koh, Hyung-Chul;Lee, Choong-Sub;Ha, Seong-Yong;Cheong, Seong-Ihl;Rhim, Ji-Won
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.555-560
    • /
    • 2009
  • Sulfonic acid of the sulfonated 6FDA-based polyimides were exchanged with the monovalent ($Li^+$, $Na^+$, $K^+$) and divalent ($Mg^{2+}$, $Ca^{2+}$, $Ba^{2+}$) ions. The effect of metal cations exchanged sulfonated polyimides was investigated in terms of gas permeability and selectivity for $CO_2$, $O_2$ and $N_2$ gases. Thermogravimetric analysis showed that thermal stability of sulfonated polyimide was improved by exchanged metal cations. The permeabilities of monovalent cation-exchanged, sulfonated polyimide were reduced as the ion radius reduced [$Li^+$(0.059 nm)>$Na^+$(0.102 nm)>$K^+$(0.138 nm)], and those of divalent cations exchanged were determined by the ionic radii and electrostatic crosslinking between the polymer and metal cations, whereas the selectivities of all the metal cation-exchanged, sulfonated polyimides for $CO_2/N_2$ and $O_2/N_2$, were higher than those of sulfonated polyimide membranes. The sulfonated polyimide exchanged with the potassium cation showed the $O_2$ permeability of 89.98 Barrer [$1\times10^{-10}\;cm^3$(STP) $cm/cm^2{\cdot}s{\cdot}cmHg$] and the sulfonated polyimide exchanged with the lithium cation showed the $O_2/N_2$ selectivity of 12.9.