• Title/Summary/Keyword: 6BA

Search Result 1,782, Processing Time 0.036 seconds

Prevalence of antibodies to Coxiella burnetii in ruminants in Gwangju area, South Korea (광주지역 반추동물의 큐열 항체 보유율 조사)

  • Oh, A-Reum;Koh, Ba-Ra-Da;Jung, Bo-Ram;Na, Ho-Myoung;Bae, Seong-Yeol;Kim, Yong-Hwan
    • Korean Journal of Veterinary Service
    • /
    • v.44 no.1
    • /
    • pp.27-33
    • /
    • 2021
  • Q fever is a worldwide zoonotic disease caused by Coxiella burnetii. Domestic ruminants are considered to be major source of human infection. The aim of this survey was to investigate seroprevalence of C. burnetii in ruminants in Gwangju area. A total of 1,000 samples (serum and lactoserum) were collected from 987 Korean native cattle, 5 Korean native goats, 2 beef cattle, 6 bulk-tank milk from each dairy farm in Gwangju area from January to October 2020 and analyzed by ELISA. The seroprevalence of C. burnetii in bulk-tank milk from each dairy farms was 50.0%. Korean black goat and beef cattle had negative antibody test results for C. burnetii. The seroprevalence of C. burnetii in Korean native cattle in Gwangju area was 7.1% and was higher in female (7.8%) than in male (3.4%) (P=0.024). The seroprevalence of C. burnetii in Korean native cattle appeared to increase with age (3.8% in 1 year-old, 7.1% in 3 year-old, and 10.7% in more than 5 year-old) (P<0.001). The seroprevalence of C. burnetii of Korean native cattle increased in spring and May was the highest in particular (P<0.001). As the distribution and density of tick-habitat are expected to increase due to climate crisis, this survey highlights the need for monitoring C. burnetii in domestic ruminants, including surveillance of C. burnetii infection in people working for livestock industry.

Enhancement and optimization of gamma radiation shielding by doped nano HgO into nanoscale bentonite

  • Allam, Elhassan A.;El-Sharkawy, Rehab M.;El-Taher, Atef;Shaaban, E.R.;RedaElsaman, RedaElsaman;Massoud, E. El Sayed;Mahmoud, Mohamed E.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2253-2261
    • /
    • 2022
  • In this study, nano-scaled shielding materials were assembled and fabricated by doping different weight percentages of Nano-mercuric oxide (N-HgO) into Nano-Bentonite (N-Bent) based on using (100-x% N-Bent + x% N-HgO, x = 10, 20, 30, and 40 wt %). The fabricated N-HgO/N-Bent nanocomposites were characterized by FT-IR, XRD, and SEM and evaluated to evaluate their shielding properties toward gamma radiation by using four different γ-ray energies form three point sources; 356 keV from 133Ba, 662 keV from 137Cs as well as 1173, and 1332 keV from 60Co. The γ-rays mass attenuation coefficients were plotted as a function of the doped N-HgO concentrations into N-HgO/N-Bent nanocomposites. The computed values of mass attenuation coefficients (µm), effective atomic number (Zeff) and electron density (Nel) by the as-prepared samples were found to increase, while the half value layer (HVL) and mean free path (MFP) were identified to decrease upon increasing the N-HgO contents. It was concluded also that the increase in N-HgO concentration led to a direct increase in the mass attenuation coefficient from 0.10 to 0.17 cm2/g at 356 keV and from 0.08 to 0.09 cm2/g at 662 keV. However, a slight increase was observed in the identified mass attenuation coefficients at (1172 and 1332 keV).

Natural radioactivity level in fly ash samples and radiological hazard at the landfill area of the coal-fired power plant complex, Vietnam

  • Loan, Truong Thi Hong;Ba, Vu Ngoc;Thien, Bui Ngoc
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1431-1438
    • /
    • 2022
  • In this study, natural radioactivity concentrations and dosimetric values of fly ash samples were evaluated for the landfill area of the coal-fired power plant (CFPP) complex at Binh Thuan, Vietnam. The average activity concentrations of 238U, 226Ra, 232Th and 40K were 93, 77, 92 and 938 Bq kg-1, respectively. The average results for radon dose, indoor external, internal, and total effective dose equivalent (TEDE) were 5.27, 1.22, 0.16, and 6.65 mSv y-1, respectively. The average emanation fraction for fly ash were 0.028. The excess lifetime cancer risks (ELCR) were recorded as 20.30×10-3, 4.26×10-3, 0.62×10-3, and 25.61×10-3 for radon, indoor, outdoor exposures, and total ELCR, respectively. The results indicated that the cover of shielding materials above the landfill area significantly decreased the gamma radiation from the ash and slag in the ascending order: Zeolite < PVC < Soil < Concrete. Total dose of all radionuclides in the landfill site reached its peak at 19.8 years. The obtained data are useful for evaluation of radiation safety when fly ash is used for building material as well as the radiation risk and the overload of the landfill area from operation of these plants for population and workers.

Particle loading as a design parameter for composite radiation shielding

  • Baumann, N.;Diaz, K. Marquez;Simmons-Potter, K.;Potter, B.G. Jr.;Bucay, J.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3855-3863
    • /
    • 2022
  • An evaluation of the radiation shielding performance of high-Z-particle-loaded polylactic acid (PLA) composite materials was pursued. Specimens were produced via fused deposition modeling (FDM) using copper-PLA, steel-PLA, and BaSO4-PLA composite filaments containing 82.7, 75.2, and 44.6 wt% particulate phase contents, respectively, and were tested under broad-band flash x-ray conditions at the Sandia National Laboratories HERMES III facility. The experimental results for the mass attenuation coefficients of the composites were found to be in good agreement with GEANT4 simulations carried out using the same exposure conditions and an atomistic mixture as a model for the composite materials. Further simulation studies, focusing on the Cu-PLA composite system, were used to explore a shield design parameter space (in this case, defined by Cu-particle loading and shield areal density) to assess performance under both high-energy photon and electron fluxes over an incident energy range of 0.5-15 MeV. Based on these results, a method is proposed that can assist in the visualization and isolation of shield parameter coordinate sets that optimize performance under targeted radiation characteristics (type, energy). For electron flux shielding, an empirical relationship was found between areal density (AD), electron energy (E), composition and performance. In cases where ${\frac{E}{AD}}{\geq}2MeV{\bullet}cm{\bullet}g^{-1}$, a shield composed of >85 wt% Cu results in optimal performance. In contrast, a shield composed of <10 wt% Cu is anticipated to perform best against electron irradiation when ${\frac{E}{AD}}<2MeV{\bullet}cm{\bullet}g^{-1}$.

Radioisotope identification using sparse representation with dictionary learning approach for an environmental radiation monitoring system

  • Kim, Junhyeok;Lee, Daehee;Kim, Jinhwan;Kim, Giyoon;Hwang, Jisung;Kim, Wonku;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1037-1048
    • /
    • 2022
  • A radioactive isotope identification algorithm is a prerequisite for a low-resolution scintillation detector applied to an unmanned radiation monitoring system. In this paper, a sparse representation with dictionary learning approach is proposed and applied to plastic gamma-ray spectra. Label-consistent K-SVD was used to learn a discriminative dictionary for the spectra corresponding to a mixture of four isotopes (133Ba, 22Na, 137Cs, and 60Co). A Monte Carlo simulation was employed to produce the simulated data as learning samples. Experimental measurement was conducted to obtain practical spectra. After determining the hyper parameters, two dictionaries tailored to the learning samples were tested by varying with the source position and the measurement time. They achieved average accuracies of 97.6% and 98.0% for all testing spectra. The average accuracy of each dictionary was above 96% for spectra measured over 2 s. They also showed acceptable performance when the spectra were artificially shifted. Thus, the proposed method could be useful for identifying radioisotopes in gamma-ray spectra from a plastic scintillation detector even when a dictionary is adapted to only simulated data. Furthermore, owing to the outstanding properties of sparse representation, the proposed approach can easily be built into an insitu monitoring system.

Tissue-cultured regeneration and ecological values in major bamboo species

  • Sharma, Avinash;Manpoong, Chowlani;Gohain, Anwesha;Pandey, Himanshu;Padu, Gompi;Aku, Hage
    • Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.218-242
    • /
    • 2022
  • Background: Promising specific growth regulators are employed in the tissue cultures of various bamboo species. Specific natural hardening mixtures support the acclimatization and adaptation of bamboo under protected cultivation. Results: The growth regulators like 2, 4-Dichlorophenoxyacetic acid (2, 4-D), Naphthaleneacetic Acid (NAA), Thidiazuron (TDZ), 6-Benzylaminopurine (BAP), Kinetin, Gelrite, Benzyl Adenine (BA), Indole Butyric Acid (IBA), Coumarin, Putrescine, Gibberellic acid (GA3), Indole Acetic Acid (IAA) has been widely used for callus induction, root regeneration and imposing plant regeneration in various species of bamboo such as Bambusa spp. and Dendrocalamus spp. Different combinations of growth regulators and phytohormones have been used for regenerating some of the major bamboo species. Natural hardening materials such as cocopeat, vermicompost, perlite, cow dung, farmyard manure, compost, soil, garden soil, and humus soil have been recommended for the acclimatization and adaptation of bamboo species. Standard combinations of growth regulators and hardening mixtures have imposed tissue culture, acclimatization, and adaptation in major bamboo species. Conclusions: Bamboo contributes to soil fertility improvement and stabilization of the environment. Bamboo species are also involved in managing the biogeochemical cycle and have immense potential for carbon sequestration and human use. This paper aims to review the various growth regulators, natural mixtures, and defined media involved in regenerating major bamboo species through in vitro propagation. In addition, the ecological benefits of safeguarding the environment are also briefly discussed.

The Properties of Optical Glass of B2O3-SiO2-La2O3 System with Li2O (Li2O가 포함된 B2O3-SiO2-La2O3계 광학 유리 특성)

  • Ji-Sun Lee;Sae-Hoon Kim;Jinho Kim
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.560-564
    • /
    • 2022
  • In this study, lanthanum boron silicate glasses were prepared with a composition of x Li2O-(60-x)B2O3-5CaO-5BaO-7ZnO-10SiO2-10La2O3-3Y2O3 where x = 1,3,5,7, and 9 mol%. Each composition was melted in a platinum crucible under atmospheric conditions at 1,400 ℃ for 2 h. Clear glasses with a transmittance exceeding 85 % were fabricated. Their optical, thermal, and physical properties, such as refractive index, Abbe number, density, glass transition (Tg) and Knoop hardness were studied. The results demonstrated that refractive index was between 1.6859 and 1.6953 at 589.3 nm. The Abbe number was calculated using an equation for 589.3 nm (nd), 656.3 nm (nf) and 486.1 nm (nc) and was observed to be in the range from 57.5 to 62.6. As the Li2O content increased, the glass transition temperature of the optical glass decreased from 608 ℃ to 564 ℃. If glass mold pressing is performed using a material with a low transition temperature and high mechanical strength, then the optical glasses developed in this study can be completely commercialized.

CONTINUITY OF JORDAN *-HOMOMORPHISMS OF BANACH *-ALGEBRAS

  • Draghia, Dumitru D.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.187-191
    • /
    • 1993
  • In this note we prove the following result: Let A be a complex Banach *-algebra with continuous involution and let B be an $A^{*}$-algebra./T(A) = B. Then T is continuous (Theorem 2). From above theorem some others results of special interest and some well-known results follow. (Corollaries 3,4,5,6 and 7). We close this note with some generalizations and some remarks (Theorems 8.9.10 and question). Throughout this note we consider only complex algebras. Let A and B be complex algebras. A linear mapping T from A into B is called jordan homomorphism if T( $x^{1}$) = (Tx)$^{2}$ for all x in A. A linear mapping T : A .rarw. B is called spectrally-contractive mapping if .rho.(Tx).leq..rho.(x) for all x in A, where .rho.(x) denotes spectral radius of element x. Any homomorphism algebra is a spectrally-contractive mapping. If A and B are *-algebras, then a homomorphism T : A.rarw.B is called *-homomorphism if (Th)$^{*}$=Th for all self-adjoint element h in A. Recall that a Banach *-algebras is a complex Banach algebra with an involution *. An $A^{*}$-algebra A is a Banach *-algebra having anauxiliary norm vertical bar . vertical bar which satisfies $B^{*}$-condition vertical bar $x^{*}$x vertical bar = vertical bar x vertical ba $r^{2}$(x in A). A Banach *-algebra whose norm is an algebra $B^{*}$-norm is called $B^{*}$-algebra. The *-semi-simple Banach *-algebras and the semi-simple hermitian Banach *-algebras are $A^{*}$-algebras. Also, $A^{*}$-algebras include $B^{*}$-algebras ( $C^{*}$-algebras). Recall that a semi-prime algebra is an algebra without nilpotents two-sided ideals non-zero. The class of semi-prime algebras includes the class of semi-prime algebras and the class of prime algebras. For all concepts and basic facts about Banach algebras we refer to [2] and [8].].er to [2] and [8].].

  • PDF

IoT botnet attack detection using deep autoencoder and artificial neural networks

  • Deris Stiawan;Susanto ;Abdi Bimantara;Mohd Yazid Idris;Rahmat Budiarto
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1310-1338
    • /
    • 2023
  • As Internet of Things (IoT) applications and devices rapidly grow, cyber-attacks on IoT networks/systems also have an increasing trend, thus increasing the threat to security and privacy. Botnet is one of the threats that dominate the attacks as it can easily compromise devices attached to an IoT networks/systems. The compromised devices will behave like the normal ones, thus it is difficult to recognize them. Several intelligent approaches have been introduced to improve the detection accuracy of this type of cyber-attack, including deep learning and machine learning techniques. Moreover, dimensionality reduction methods are implemented during the preprocessing stage. This research work proposes deep Autoencoder dimensionality reduction method combined with Artificial Neural Network (ANN) classifier as botnet detection system for IoT networks/systems. Experiments were carried out using 3- layer, 4-layer and 5-layer pre-processing data from the MedBIoT dataset. Experimental results show that using a 5-layer Autoencoder has better results, with details of accuracy value of 99.72%, Precision of 99.82%, Sensitivity of 99.82%, Specificity of 99.31%, and F1-score value of 99.82%. On the other hand, the 5-layer Autoencoder model succeeded in reducing the dataset size from 152 MB to 12.6 MB (equivalent to a reduction of 91.2%). Besides that, experiments on the N_BaIoT dataset also have a very high level of accuracy, up to 99.99%.

Alpha-Glucosidase Inhibitory Activity of Saponins Isolated from Vernonia gratiosa Hance

  • Pham Van Cong;Hoang Le Tuan Anh;Le Ba Vinh;Yoo Kyong Han;Nguyen Quang Trung;Bui Quang Minh;Ngo Viet Duc;Tran Minh Ngoc;Nguyen Thi Thu Hien;Hoang Duc Manh;Le Thi Lien;Ki Yong Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.797-805
    • /
    • 2023
  • Species belonging to the Vernonia (Asteraceae), the largest genus in the tribe Vernonieae (consisting of about 1,000 species), are widely used in food and medicine. These plants are rich sources of bioactive sesquiterpene lactones and steroid saponins, likely including many as yet undiscovered chemical components. A phytochemical investigation resulted in the separation of three new stigmastane-type steroidal saponins (1 - 3), designated as vernogratiosides A-C, from whole plants of V. gratiosa. Their structures were elucidated based on infrared spectroscopy (IR), one-dimensional (1D) and two-dimensional nuclear magnetic resonance (2D NMR), high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), and electronic circular dichroism analyses (ECD), as well as chemical reactivity. Molecular docking analysis of representative saponins with α-glucosidase inhibitory activity was performed. Additionally, the intended substances were tested for their ability to inhibit α-glucosidase activity in a laboratory setting. The results suggested that stigmastane-type steroidal saponins from V. gratiosa are promising candidate antidiabetic agents.