• Title/Summary/Keyword: 64-Array antenna

Search Result 22, Processing Time 0.025 seconds

Design of Array Antenna for Radar Wind Profiler using Bend-Dipole (Bend-다이폴을 이용한 RWP 배열안테나 설계)

  • Jeon, Jung-Ik;Choi, Young-Jo;Lee, Hyeong-Ki;Jeon, Jeong-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.43-51
    • /
    • 2020
  • In this paper, the design of 64 array antennas applied to RWP (Radar Wind Profiler) was described. The design point of the antenna is to ensure isolation between each element and to match the vertical / horizontal radiation pattern. To this end, a single element of the array antenna was proposed as a Bend dipole type, and through simulation, When sequentially sending 5 beams including vertical, the east/west/south/north direction was ±20°, and it was confirmed that no Grating Lobe occurred when steering the beam. The 64 array antenna proposed in this paper was designed with performance equal to or higher than that of overseas products, and was confirmed to be applicable to RWP.

Phased Array Behavior of the Coupling of the Millimeter Wave Second Harmonic Oscillator (밀리미터파 대역 제2고조파 발진기 결합계의 위상차 배열 동작)

  • Choi, Young-Kyu;Kim, Gi-Rae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.438-444
    • /
    • 2015
  • A new approach to the active phased arrays for the second harmonic generation is presented. Phase variation between the second harmonic oscillators by the mutual synchronization is analyzed theoretically. In this coupling, the active antenna consists of the FET oscillator which plays two roles in fundamental oscillation and frequency multiplying, and the patch antenna resonated at the second harmonic frequency. The radiated second harmonic wave was scanned by varying the free-running oscillation frequencies of the active antennas. In the experiment using the 2-elements array and the 4-elements array, the radiated beam of the second harmonic wave was scanned more widely compared with the case of the fundamental wave radiation.

Antenna Array Compensation for Improved DOA Estimation (도래각 추정 성능 향상을 위한 배열 안테나 보정 기법)

  • Song, Heemang;Cho, Seunghoon;Lee, Jaeeun;Jeong, Seonghee;Shin, Hyun-Chool
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.786-791
    • /
    • 2015
  • This paper presents a signal processing method for calibrating an antenna array to solve the inaccuracy of Direction of Arrival(DOA). Using reference data quantifying amplitude and phase distortion levels for each angles, we compensate each radar array’s amplitude and phase distortion. The proposed method is applied to the Bartlett, Capon and MUSIC algorithms, Using 77 GHz Frequency Modulated Continuous Wave(FMCW) Long Range Radar(LRR) signal, we experimentally demonstrate the performance improvement after the proposed compensation.

Radiation Characteristics of Parallel Slot Antenna for Automotive Radar System (자동차 레이더 시스템을 위한 병렬형 슬롯 방식 안테나의 방사 특성)

  • Kim, Byeong-Woo;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.1980-1985
    • /
    • 2010
  • This paper is about design of optimal structure of slot antenna array antenna with inner waveguide in accordance with the slot model, and fabrication of its prototype sample operating at the frequency of 24 GHz. Results of this work can be employed as a useful tool to develop and diversify slot antenna having superior performance and omni-directivity to that of current antenna. The implemented antenna demonstrates ultra-wideband performance for frequency ranges 24 GHz with the relatively high and flat antenna gain of 18.64dBi and low sidelobe levels. In addition, a $2{\times}8$ antenna array for phased-array systems and mm-wave sensor applications is also presented.

SFCFOS Uniform and Chebyshev Amplitude Distribution Linear Array Antenna for K-Band Applications

  • Kothapudi, Venkata Kishore;Kumar, Vijay
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.64-70
    • /
    • 2019
  • In this study, a compact series-fed center-fed open-stub (SFCFOS) linear array antenna for K-band applications is presented. The antenna is composed of a single-line 10-element linear array. A symmetrical Chebyshev amplitude distribution (CAD) is used to obtain a low sidelobe characteristic against a uniform amplitude distribution (UAD). The amplitude is controlled by varying the width of the microstrip patch elements, and open-ended stubs are arranged next to the last antenna element to use the energy of the radiating signal more effectively. We insert a series-fed stub between two patches and obtain a low mutual coupling for a 4.28-mm center-to-center spacing ($0.7{\lambda}$ at 21 GHz). A prototype of the antenna is fabricated and tested. The overall size of the uniform linear array is $7.04{\times}1.05{\times}0.0563{\lambda}_g^3$ and that of the Chebyshev linear array is $9.92{\times}1.48{\times}0.0793{\lambda}_g^3$. The UAD array yields a ${\mid}S_{11}{\mid}$ < -10 dB bandwidth of 1.33% (20.912-21.192 GHz) and 1.45% (20.89-21.196 GHz) for the CAD. The uniform array design gives a -23 dB return loss, and the Chebyshev array achieves a -30.68 dB return loss at the center frequency with gains of 15.3 dBi and 17 dBi, respectively. The simulated and measured results are in good agreement.

A Study on a Capacitively Coupled Microstrip Array Antenna (용량성 결합 마이크로스트립 배열 안테나에 대한 연구)

  • Lee, Jong-Ig;Yeo, Junho;Baek, Woon-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.63-64
    • /
    • 2015
  • In this paper, a microstrip array antenna capacitively coupled to a microstrip line is studied. The array antenna consists of uniformly spaced rectangular microstrip patches arranged close to a feeding microstrip line on a grounded dielectric substrate. The effects of various parameters, such as strip width and length, distance between adjacent patches, gap between strip patches and microstrip feed line, on the antenna performance were examined. By properly adjusting geometrical parameters, the array suitable for a high gain antenna for use in a frequency band centered at 12.5 GHz was designed.

  • PDF

A design of a circular phased-array antenna with microstrip slots (마이크로스트립 슬로트의 원형 위상배열 안테나 설계)

  • 임계재;고성선;윤현보
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.1
    • /
    • pp.46-54
    • /
    • 1991
  • A noble phased-array antenna of the circular form with microstrip slots was designed for steering the radiation beam and increasing the directivity and gain. The directivity and gain could be controlled, varying the number of slots and the radius of a circle, but here, the 40 .deg. beam scanning antenna system was achieved by tangentially arranging 4 mi- crostrip slots on a circumference and the analog phase shifter was used to adjust phase difference in the adjacent elements. And such a system has a microstrip configuration taking the effects of the line dispersion and discontinuities into account at 10 Ghz. The experimental results were fairly agreed with theoretical values, and this circular phased array had an improved performance over the rectangular phased array with 64-microstrip patches in a view of the number of array elements.

  • PDF

A Study on the Beam-forming of the Linear Array Antenna using Grating Lobe (Grating Lobe를 이용한 선형 배열 안테나의 Beam-forming에 관한 연구)

  • 신정록;송우영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.5
    • /
    • pp.806-812
    • /
    • 2000
  • In this paper, we theoretically studied on the large antenna array whose element had wider than one wavelength. And we also verified the adaptedness through the experiments. Using grating lobes, we could make antenna have sharp HPBW. Not only HPBW but also SLL could be controlled by giving optimal space for antenna array. In order to verify this method, we designed 4 horn antenna array and measured the radiation patterns at 9 GHz. Each horn antenna has the dimension of 64.3$\times$82.5$\textrm{mm}^2$ and HPBW of 27$^{\circ}$. The space between antennas is longer than one wavelength so that it may have the grating lobes in visible region. As a result of experiments, we could get HPBW of 4.3$^{\circ}$, 3.3$^{\circ}$ and 1.7$^{\circ}$when giving 2.5λ, 2.7λ and 3.0λ of the spacing respectively. We concluded this could be useful making the antenna with narrow HPBW.

  • PDF

Design of Circular Microstrip Patch 2×2 Array Antenna for S-band Applications (S-밴드용 원형 마이크로스트립 패치 2×2 배열 안테나의 설계)

  • Ahn, Yong-Bok;Choi, Byoung-Ha
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.1
    • /
    • pp.64-71
    • /
    • 2007
  • In this paper, we have designed and fabricated microstrip antenna of S-band for the wireless LAN and the ISM. It array $2{\times}2$ circular patch antenna elements at plane instead of conventional rectangular patch antenna elements. It optimized to size calculated of single patch antenna. The radiation elements distance is array $0.24{\lambda}$. The fabricated circular patch antenna decreased 8% of size compared to the conventional rectangular patch antenna. In the E-plane, designed circular microstrip patch $2{\times}2$ array antenna gain is 12.7[dBi], half power beam width is $40^{\circ}$ and in the H-plane, antenna gain is 12.1[dBi], half power beam width is $45^{\circ}$. Bandwidth is 250[MHz] (VSWR < 2).

  • PDF

λ/64-spaced compact ESPAR antenna via analog RF switches for a single RF chain MIMO system

  • Lee, Jung-Nam;Lee, Yong-Ho;Lee, Kwang-Chun;Kim, Tae Joong
    • ETRI Journal
    • /
    • v.41 no.4
    • /
    • pp.536-548
    • /
    • 2019
  • In this study, an electronically steerable parasitic array radiator (ESPAR) antenna via analog radio frequency (RF) switches for a single RF chain MIMO system is presented. The proposed antenna elements are spaced at ${\lambda}/64$, and the antenna size is miniaturized via a dielectric radome. The optimum reactance load value is calculated via the beamforming load search algorithm. A switch simplifies the design and implementation of the reactance loads and does not require additional complex antenna matching circuits. The measured impedance bandwidth of the proposed ESPAR antenna is 1,500 MHz (1.75 GHz-3.25 GHz). The proposed antenna exhibits a beam pattern that is reconfigurable at 2.48 GHz due to changes in the reactance value, and the measured peak antenna gain is 4.8 dBi. The reception performance is measured by using a $4{\times}4$ BPSK signal. The measured average SNR is 17 dB when using the proposed ESPAR antenna as a transmitter, and the average SNR is 16.7 dB when using a four-conventional monopole antenna.