• Title/Summary/Keyword: 6061Al

Search Result 345, Processing Time 0.024 seconds

Application of Failure Criteria in Aluminum Sheet Forming Analysis (알루미늄 판재 성형해석 시 파단 모델 적용)

  • Kim, Ki-Jung;Nguyen, Ngoc-Trung;Kim, Dae-Young;Kim, Heon-Young
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.167-172
    • /
    • 2011
  • The numerical simulation of the Forming Limit Diagram(FLD) test was carried out to calculate the limiting dome height(LDH: ISO12004-2) for aluminum alloy sheet Al6061-T6. The finite element analysis was used as an effective method for evaluating formability and diagnosing possible production problems in sheet stamping operations. To predict fracture during the stamping process, several failure models such as Cockcroft-Latham, Rice-Tracey, Brozzo and ESI-Wilkins-Kamoulakos(EWK) criteria were applied. The predicted results were discussed and compared with the experiments for Al6061-T6.

Three Dimensional Finite Element Analysis of Particle Reinforced Metal Matirx Composites Considering the Thermal Residual Stress and the Non-uniform Distribution of Reinforcements (금속복합재료의 열잔류 응력과 강화재의 불규칙 분산 상태를 고려한 3차원 유한 요소 해석)

  • 강충길;오진건
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.199-209
    • /
    • 2000
  • Particles reinforced MMCs have higher specific modulus, higher specific strength, better properties at elevated temperatures and better wear resistance than monolithic metals. But the coefficient of thermal expansion(CTE) of Al6061 is 5 times larger than that of SiCp. The discrepancy of CTE makes some residual stresses inside of MMCs. This work investigates Si$C_p$/Al6061 composites at high temperatures in the microscopic view by three-dimensional elasto-plastic finite element analyses and compares the analytical results with the experimental ones. The theoretical model is not able to consider the nonuniform shape of particle. So the shape of particle is assumed to be perfect global shape. And also particle distribution is not homogeneous in experimental specimen. It is assumed to be homogeneous in simulation model. The type of particle distribution is face-centered cubic array(FCC array). Furthermore, non-homogeneous distribution is modeled by combination of several volume fractions.

  • PDF

Development of Strength Analysis Modules for TiNi/Al 6061 Shape Memory Alloy (TiNi/Al 6061 형상기억 복합재료의 강도해석 모듈 개발)

  • 이동화;박영철;박동성;이규창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.692-696
    • /
    • 2001
  • Thermo-mechanical behavior and mechanical properties of intelligent polymer matrix composite with SMA fiber are experimentally studied. It is found that increments of compressive thermal strain is observed as the pre-strain and TiNi volume fraction increase. The smartness of the SMA is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when heated after being prestrained. In the paper, alloy is based on the general purpose commercial code ANSYS. And for the purpose of easy and fast user's analysis, it is developed the Graphical User Interface by using Tcl/Tk language.

  • PDF

Fabrication and AE Characteristics of TiNi/ A16061 Shape Memory Alloy Composite

  • Park, Young-Chul;Lee, Jin-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.453-459
    • /
    • 2004
  • TiNi/ Al6061 shape memory alloy (SMA) composite was fabricated by hot press method to investigate the microstructure and mechanical properties. Interface bonding between TiNi reinforcement and A1 matrix was observed by using SEM and EDS. Pre-strain was imposed to generate compressive residual stress inside composite. A tensile test for specimen, which under-went pre-strain, was performed at high temperature to evaluate the variation of strength and the effect of pre-strain. It was shown that interfacial reactions occurred at the bonding between matrix and fiber, creating two inter-metallic layers. And yield stress increased with the amount of pre-strain. Acoustic Emission technique was also used to nondestructively clarify the microscopic damage behavior at high temperature and the effect of pre-strain of TiNi/ Al6061 SMA composite.

Corrosion Behavior of Arc Weld and Friction Stir Weld in Al 6061-T6 Alloys

  • Yoon, Byoung-Hyun;Kim, Heung-Ju;Chang, Woong-Seong;Kweon, Young-Gak
    • Corrosion Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.196-200
    • /
    • 2006
  • For the evaluation of corrosion resistance of Al 6061-T6 alloy, Tafel method and immersion test was performed with Friction Stir Weld(FSW) and Gas Metal Arc Weld(GMAW). The Tafel and immersion test results indicated that GMA weld was severely attacked compared with those of friction stir weld. It may be mainly due to the galvanic corrosion mechanism act on the GMA weld.

Application of Failure Criteria in Aluminum sheet Forming Analysis (알루미늄합금판재 성형한계 예측을 위한 파단모델 적용)

  • Lee, Eun-Guk;Kim, Heon-Yeong;Kim, Hyeong-Jong;Kim, Heung-Gyu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.207-207
    • /
    • 2011
  • The numerical simulation of the Forming Limit Diagram(FLD) test was carried out to calculate the limiting dome height(LDH: ISO12004-2) for aluminum alloy sheet Al6061-T6. The finite element analysis was used as an effective method for evaluating formability and diagnosing possible production problems in sheet stamping operations. To predict fracture during the stamping process, several failure models such as Cockcroft-Latham, Rice-Tracey, Brozzo and ESI-Wilkins-Kamoulakos(EWK) criteria were applied. The predicted results were discussed and compared with the experiments for Al6061-T6.

  • PDF

A Study on the Analysis of Forming Process for Swash-Plate by Using Prepreg (탄소/에폭시 프리프레그를 이용한 스와시 플레이트의 성형공정 해석에 관한 연구)

  • Kim, K.S.;Yoon, H.K.;Shin, J.Y.;Hur, K.D.
    • Transactions of Materials Processing
    • /
    • v.19 no.2
    • /
    • pp.127-131
    • /
    • 2010
  • Carbon-epoxy prepreg has been introduced in the forming of the upper and lower swash plates that control the pitch of rotor blade of unmanned helicopter because of its lightweight. Taguchi experimental method has been used by introducing the variables such as arrangement angle, laminated number and forming temperature, in order to obtain the proper forming method by using prepreg satisfying the required strength of the swash plate. In the evaluation of structural safety for the swash plates, three kinds of models are considered by using FE-analysis. In comparison of the hot forged products with Al6061-T6 and the formed products with prepreg, it was found that ultimate tensile strength of the products with prepreg is three times higher than that of the Al6061-T6, and the weight reduction of 68.5g can be achieved by using prepreg swash plates.

Development of a Cemented Carbide-Welded Deburring Tool for Burr Removal in Drill Holes of AL6061 Workpieces (AL6061 소재의 홀 가공 시 버 제거를 위한 초경합금 접합 디버링 공구 개발)

  • Sa, Min-Woo;Lee, Jae-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.1-7
    • /
    • 2021
  • In recent years, automated process technology has allowed for the rapid manufacturing of metal parts. Maintaining high product quality is of vital importance during the production of these parts. Surface defects occurring after processing can compromise their assembly precision and performance. In this study, a deburring tool was developed that can remove burrs generated from drilling. Through the evaluation of processing, burrs were completely removed at entrance and exit surfaces. Therefore, this newly developed deburring tool shows better performance than deburring tools currently in use.

A Study on the Effect that Pin Shape on Mechanical Strength in Dissimilar Friction Stir Welding A6061-T6 and A5052-H32 (A6061-T6과 A5052-H32재의 이종 마찰교반용접시 핀 형상이 기계적 강도에 미치는 영향에 관한 연구)

  • Park, Hee-Sang;Choi, Won-Doo;Ko, Jun-Bin;Lee, Young-Ho;Shin, Ki-Seok;Kim, In-Chul;Choi, Man-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.270-278
    • /
    • 2009
  • Friction stir welding is a relatively new solid state joining process. A6061-T6 and A5052-H32 aluminium alloy has gathered wide acceptance in the fabrication of light weight structures requiring a high strength to weight ratio and good corrosion resistance. This friction stir process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, etc., and tool pin profile play a major role in deciding FSP zone formation in A6061-T6 and A5052-H32 aluminium alloy. Three different tool pin profiles have been used to fabricate the dissimilar butt joints. The formation of friction stir processed zone has been analysed macroscopically. Tensile properties of the joints have been evaluated and correlated with the friction stir processed zone formation.

  • PDF

Effects of Cryogenic Treatment on Residual Stress and Tensile Properties for 6061 Al Alloy (극저온 열처리 공정이 6061 알루미늄 합금의 잔류응력과 인장특성에 미치는 영향)

  • Park, Kijung;Ko, Dea Hoon;Kim, Byung Min;Lim, Hak Jin;Lee, Jung Min;Cho, Young-Rae
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.9-16
    • /
    • 2011
  • To develop a 6061 aluminum alloy with low residual stress and high tensile strength, a cryogenic treatment process was investigated. Compared to the conventional heat treatment process for precipitation hardening with artificial aging, the cryogenic treatment process has two additional steps. The first step is cryogenic quenching of the sample into liquid nitrogen, the second step is up-hill quenching of the sample into boiling water. The residual stress for the sample was measured by the $sin^2{\psi}$ method with X-ray diffraction. The 6061 aluminum alloy sample showed 67% relief in stress at the cryogenic treatment process with artificial aging at $175^{\circ}C$. From this study, it was found that the optimum cryogenic treatment process for a sample with low residual stress and high tensile strength is relatively low cooling speed in the cryogenic quenching step and a very high heating speed in the up-hill quenching step.