• 제목/요약/키워드: 6061Al

검색결과 344건 처리시간 0.022초

Al 6061 합금 양극산화피막의 성장과 부식특성에 미치는 혼합 전해용액의 영향 (Effect of the Mixed Electrolyte on the Film Growth and Corrosion Characteristics of Anodized Al 6061 Alloy)

  • 류한웅;김용환;정우창;정원섭
    • 한국재료학회지
    • /
    • 제17권5호
    • /
    • pp.244-249
    • /
    • 2007
  • The properties of anodized films on aluminum 6061 alloy in single electrolyte of sulfuric acid and mixed electrolyte of sulfuric-boric acid and sulfuric-boric-nitric acid have been studied. Polarization tests in NaC solution were used to investigate the corrosion performance. Characteristics of film formation and surface morphology were examined by optical microscopy, FE-SEM and EDS. The results obtained have indicated that oxide films growth have been promoted by nitric acid and anodized films in mixed electrolyte have superior corrosion resistance. In case of anodic films formed in mixed electrolyte, some grooves and numerous crazings were also observed at the surface.

금형주조법에 의한 TiNi/6061Al 복합재료의 미세조직에 미치는 냉간가공도의 영향 (Effect of the Degree of Cold Working on the Microstructures for TiNi/6061Al Composites by Permanent mold Casting)

  • 박성기;신순기;박광훈;성장현;박영철;이규창;이준희
    • 한국재료학회지
    • /
    • 제11권12호
    • /
    • pp.1028-1034
    • /
    • 2001
  • The 2.5 vol% TiNi/6061Al composites were fabricated by permanent mold casting. The microstructures and tensile test for the cold rolled composites with maximum 50% reduction ratio were investigated. In the case of TiNi fiber with 2mm interval in preform, the interface bonding of fabricated composites were good, interface diffusion layer of this composites was made by the mutual diffusion. Transverse section of TiNi fiber was decreased with increasing reduction ratio and longitudinal section of TiNi fiber showed multiple wave phenomenon. And the tensile strength of composites at 38% reduction ratio was the most high. In the case of over 38% reduction ratio, the decrease of the tensile strength was due to TiNi fiber rupture by excess working. The fracture mode was appeared brittle fracture with increasing reduction ratio.

  • PDF

Laser-FSW Hybrid 접합기술을 적용한 이종재료(Al6061-T6/SS400) 접합부의 접합성 및 기계적 특성에 관한 연구 (A Study on the Weldability and Mechanical Characteristics of Dissimilar Materials Butt Joints by Laser Assisted Friction Stir Welding)

  • 방한서;방희선;김현수;김준형;오익현;노찬승
    • Journal of Welding and Joining
    • /
    • 제28권6호
    • /
    • pp.70-75
    • /
    • 2010
  • This study intends to investigate the weldability and mechanical characteristics of butt weld joints by LAFSW for dissimilar materials (Al6061-T6 and SS400). At optimum welding conditions, the tensile strength of dissimilar materials joints made by FSW is found to be lower than that of LAFSW. Due to the increase in plastic flow and formation of finer recrystallized grains at the TMAZ and SZ by laser preheating in LAFSW, the hardness in LAFSW appeared to be higher than that of FSW. Compared with FSW, finer grain size is observed and elongated grains in parent metal are deformed in the same direction around the nugget zone in TMAZ of Al6061-T6 by LAFSW. Whereas, at weld nugget zone, coarse grain size is appeared in LAFSW compared to FSW, which is owing to more plastic flow due to laser preheating effect. In dissimilar materials joints by LAFSW, ductile mode of fracture is found to occur at Al6061 side with fewer brittle particles. Mixed mode of cleavage area and ductile fracture is observed at SS400 side.

TiNi/A16061 형상기억복합재료의 미시적 손상거동과 손상위치측정에 관한 연구 (A Study on the Microscopic Damage Behavior and the Damage Position Evaluation of TiNi/Al6061 Share Memory Alloy Composite)

  • 이진경;박영철;구후택;이규창
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1787-1794
    • /
    • 2002
  • TiNi alloy fiber was used to solve the problem of the tensile residual stress as the reinforced material. TiNi alloy fiber improves the tensile strength of composite by occurring compressive residual stress in the matrix using shape memory effect. In order to generate compressive residual stress in TiNi/Al6061 shape memory alloy(SMA) composite, 1, 3 and 5% pre-strains were applied to the composite in advance. It was also evaluated the effect of compressive residual stress corresponding to the pre-strain variation and the volume fraction of TiNi alloy. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain in TiNi/Al6061 SMA composite. The results of the microscopic damage evaluation of TiNi/Al6061 SMA composite under various pre-strain using AE technique can be divided into three stage corresponding to the AE signals. AE counts and events were useful parameters to evaluate the fracture mechanism according to the variation of pre-strain. In addition, two dimensional AE source location technique was applied for monitoring the crack initiation and propagation in composite.

디지털 이미지 상관관계를 이용한 Al 6061-T6 인장시험편의 변형률 측정에 관한 연구 (A Study of the Strain Measurement for Al 6061-T6 Tensile Specimen using the Digital Image Correlation)

  • 권오헌;김상태;강지웅
    • 한국안전학회지
    • /
    • 제28권4호
    • /
    • pp.26-32
    • /
    • 2013
  • A digital image correlation(DIC) method is a whole-field measurement technique that acquires surface displacements and strains from images information which characterized a random speckle as intensity grey levels. Recently years, this DIC method is being developed and used increasingly in various research. In this study, we tried to apply to aluminum alloy(Al 6061-T6) using DIC method and strain gauge. DIC results demonstrated the usefulness and ability to determine a strain. The test specimen used in this study was an aluminum alloy(Al 6061-T6, thickness 1 mm). For a strain measurement, a strain gauge was attached at the center of a specimen. A specimen was lightly sprayed with a white paint and a black dot pattern was sprayed on its fully dried white surface to obtain a random speckle. The experimental apparatus used to perform the tensile test consisted of universal dynamic tester(5 kN; T.O. Co.) under displacement speed of 0.5, 1.0 and 3.0 mm/min. A Model 5100 B Scanner(V. Co.) used to obtain a strain. A CCD camera connected to a PC uses to record the images of the specimen surface. After acquisition, the images were transferred to PC where the DIC software was implemented. An acquired image was evaluated by the DIC program. DIC method for displacement and strain was suggests and it results show a good consistent remarkably. DIC results demonstrated the usefulness and ability to determine surface strain was better than by using classical measurements. The strain field measurement using a DIC is so useful that it can be applied to map strain distributions at a full area. DIC method can evaluate a strain change so it can predict a location of fracture. The findings of the investigation suggest that the DIC method is an efficient and reliable tool for full-field monitoring and detailed damage characterization of materials.

황산 용액에서 Al6061 합금의 아노다이징 피막 형성거동 (Formation Behavior of Anodic Oxide Films on Al 6061 Alloy in Sulfuric Acid Solution)

  • 문성모;정기훈;임수근
    • 한국표면공학회지
    • /
    • 제51권6호
    • /
    • pp.393-399
    • /
    • 2018
  • Formation behavior of aluminum anodic oxide (AAO) films on Al6061 alloy was studied in view of thickness, morphology and defects in the anodic films in 20 vol.% sulfuric acid solution at a constant current density of $40mA/cm^2$, using voltage-time curve, observation of anodized specimen colors and surface and cross-sectional morphologies of anodic films with anodization time. With increasing anodizing time, voltage for film formation increased exponentially after about 12 min and its increasing rate decreased after 25 min, followed by a rapid decrease of the voltage after about 28 min. Surface color of anodized specimen became darker with increasing anodizing time up to about 20 min, while it appeared to be brighter with increasing anodizing time after 20 min. The darkened and brightened surfaces with anodizing time are attributed to an increase in thickness of porous anodic oxide film and a chemical damage of the films due to heat generated by increased resistance of the film, respectively. Cross-sectional observation of AAO films revealed the formation of defects of crack shape at the metal/oxide interface after 15 min which prevents the growth of AAO films. Width and length of the crack-like defect increased with anodizing time up to 25 min of anodizing, and finally the outer part of AAO films was partly dissolved or detached after 30 min of anodizing, resulting in non-uniform surface structures of the AAO films.

Al6061합금의 PEO 피막 형성에 미치는 AC 전류밀도의 영향 (Effect of AC Current Density on the PEO Film Formation of Al6061 Alloy)

  • 박철기;문성모;정인모;윤대수
    • 한국표면공학회지
    • /
    • 제52권3호
    • /
    • pp.138-144
    • /
    • 2019
  • In this work, PEO (Plasma Electrolytic Oxidation) film formation behavior of Al6061 alloy was investigated as a function of applied current density of AC at 310 Hz in the range from $120mA/cm^2$ to $300mA/cm^2$ in 0.5 M $Na_2SiO_3$ solution. When applied current density is lower than a critical voltage of about $132mA/cm^2$, voltage reaches a steady-state values less than 120 V without generation of arcs and metallic color of the alloy surface remains. On the other hand, when applied current density exceeds about $132mA/cm^2$, voltage increases continuously with time and arcs are generated at more than 175 V, resulting in the formation of PEO films with grey colors. Two different types of arcs, large size and small number of arcs with orange color, and small size and large number of arcs with white color, were generated at the same time when the PEO film thickness exceeds about $50{\mu}m$, irrespective of applied current density. Formation efficiency of the PEO films was found to increase with increasing applied current density and the growth rate was obtained to be about $5{\mu}m/min$ at $300mA/cm^2$. It was also found that surface roughness of the PEO films with $70{\mu}m$ thickness is not dependent on the applied current density.

MICROSTRUCTURAL CHARACTERISTICS OF HOT FORGED AL 6061 ALLOY

  • Kwon Y.-N.;Lee Y.-S.;Lee J.-H.
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.55-58
    • /
    • 2003
  • Many researches have been already done on the issues of high temperature deformation and the microstructural evolution. The information has been very useful for the plasticity industry, especially successful for the extrusion. However, the parts made with forging usually have a complex shape. It is difficult to control the distribution of the variables like strain, strain rate and temperature rise due to the working heat during a hot-forging process. Consequently, the microstructural variation could be occurred depending on the plastic deformation history that the forged part would get during a hot forging. In the present study, the microstructural characteristic of a hot-forged 6061 aluminum alloy has been discussed on the aspect of grain size evolution. A forging of 6061 aluminum alloy has been carried out for a complex shape with a dimensional variation. Also, finite element analysis has been done to understand how the deformation variables such as strain, strain rate give an influence on the microstructure of a hot forged aluminum product.

  • PDF

20% 황산 및 8% 황산 + 3% 옥살산에서 AA6061 합금 표면에 형성된 아노다이징 피막의 내전압 특성 (Dielectric breakdown of anodic oxide films formed on AA6061 in 20% H2O4and 8% H2SO4+ 3% C2H2O4 solutions)

  • 박철기;장재확;현윤석;문성모
    • 한국표면공학회지
    • /
    • 제57권1호
    • /
    • pp.8-13
    • /
    • 2024
  • Anodizing of Al6061 alloy was conducted in two different electrolytes of 20% sulfuric acid and 8% sulfuric acid + 3 % oxalic acid solutions at a constant current or decreasing current density conditions, and its dielectric breakdown voltage was measured. The surface morphology of anodic oxide films was observed by TEM and thermal treatment was carried out at 400 ℃ for 2 h to evaluate the resistance of the anodic oxide films to crack initiation. The anodic oxide film formed in 8% sulfuric acid + 3 % oxalic acid solution showed higher dielectric breakdown voltage and better resistance to crack initiation at 400 ℃ than that formed in 20% sulfuric acid solution. The dielectric breakdown voltage increased 6 ~12% by applying decreasing current density comparing with a constant current density.

고압용기로 사용되는 후방압출된 알루미늄 6061합금의 기계적 특성에 미치는 용체화처리 및 시효처리의 영향 (The Effect of Solution Heat Treatment and Aging Treatment on the Mechanical Properties of Backward Extruded A6061 Alloy for Pressure Vessels)

  • 권의표;우기도;문민석;강덕수;남궁천;유계형
    • 대한금속재료학회지
    • /
    • 제47권3호
    • /
    • pp.175-181
    • /
    • 2009
  • Mechanical properties and precipitation behavior of backward extruded 6061 Al alloy for pressure vessel were investigated using tensile test, transmission electron microscopy (TEM) and differential scanning calorimeter (DSC). In this study, solution heat treatment (SHT) was performed at $535^{\circ}C$ for 30~90 min and aging treatment was conducted at 177 and $190^{\circ}C$ for 1~7 h. Maximum tensile strength of $36.6kgf/mm^2$ and yield strength of $33.29kgf/mm^2$ were achieved at the aging time of 5 h at $190^{\circ}C$. TEM observation showed that fine needle-like ${\beta}^{{\prime}{\prime}}$ phase which has 35~45 nm of length was uniformly distributed in the aged 6061 Al alloy specimen. From tensile test, TEM and DSC analysis, it is expected that aging time of 2~5 h at $190^{\circ}C$ is suitable for the extruded A6061 used as pressure vessels.