• Title/Summary/Keyword: 6-Node Element

검색결과 134건 처리시간 0.022초

Damped dynamic responses of a layered functionally graded thick beam under a pulse load

  • Asiri, Saeed A.;Akbas, Seref D.;Eltaher, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • 제75권6호
    • /
    • pp.713-722
    • /
    • 2020
  • This article aims to illustrate the damped dynamic responses of layered functionally graded (FG) thick 2D beam under dynamic pulse sinusoidal load by using finite element method, for the first time. To investigate the response of thick beam accurately, two-dimensional plane stress problem is assumed to describe the constitutive behavior of thick beam structure. The material is distributed gradually through the thickness of each layer by generalized power law function. The Kelvin-Voigt viscoelastic constitutive model is exploited to include the material internal damping effect. The governing equations are obtained by using Lagrange's equations and solved by using finite element method with twelve -node 2D plane element. The dynamic equation of motion is solved numerically by Newmark implicit time integration procedure. Numerical studies are presented to illustrate stacking sequence and material gradation index on the displacement-time response of cantilever beam structure. It is found that, the number of waves increases by increasing the graduation distribution parameter. The presented mathematical model is useful in analysis and design of nuclear, marine, vehicle and aerospace structures those manufactured from functionally graded materials (FGM).

Nonlinear vibration analysis of carbon nanotube reinforced composite plane structures

  • Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Rajabzadeh-Safaei, Niloofar
    • Steel and Composite Structures
    • /
    • 제30권6호
    • /
    • pp.493-516
    • /
    • 2019
  • This paper is dedicated to nonlinear static and free vibration analysis of Uniform Distributed Carbon Nanotube Reinforced Composite (UD-CNTRC) structures under in-plane loading. The authors have suggested an efficient six-node triangular element. Mixed Interpolation of Tensorial Components (MITC) approach is employed to alleviate the membrane locking phenomena. Moreover, the behavior of the well-known LST element is considerably improved by applying an additional linear interpolation on the strain fields. Based on the rule of mixture, the properties of CNTRC are obtained. In this study, only the uniform distributed CNTs are employed through the thickness direction of element. To achieve the natural frequencies and shape modes, the eigenvalue problem is also solved. Using Total Lagrangian Principles, large amplitude free vibration is considered based on the first normalized mode shape of structure. Different well-known plane problem benchmarks and some proposed ones are studied to validate the accuracy and capability of authors' formulations. In addition, the effects of length to the height ratio of beam, CNT's characteristics, support conditions and normalized amplitude parameter on the linear and nonlinear vibration parameters are investigated.

Modal analysis of FG sandwich doubly curved shell structure

  • Dash, Sushmita;Mehar, Kulmani;Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • 제68권6호
    • /
    • pp.721-733
    • /
    • 2018
  • The modal frequency responses of functionally graded (FG) sandwich doubly curved shell panels are investigated using a higher-order finite element formulation. The system of equations of the panel structure derived using Hamilton's principle for the evaluation of natural frequencies. The present shell panel model is discretised using the isoparametric Lagrangian element (nine nodes and nine degrees of freedom per node). An in-house MATLAB code is prepared using higher-order kinematics in association with the finite element scheme for the calculation of modal values. The stability of the opted numerical vibration frequency solutions for the various shell geometries i.e., single and doubly curved FG sandwich structure are proven via the convergence test. Further, close conformance of the finite element frequency solutions for the FG sandwich structures is found when compared with the published theoretical predictions (numerical, analytical and 3D elasticity solutions). Subsequently, appropriate numerical examples are solved pertaining to various design factors (curvature ratio, core-face thickness ratio, aspect ratio, support conditions, power-law index and sandwich symmetry type) those have the significant influence on the free vibration modal data of the FG sandwich curved structure.

유한요소법을 이용한 인공 고관절의 접촉응력 해석에 관한 연구 (Contact Stress Analysis of Artificial Hip Joints Using Finite Element Method)

  • 김청균;윤종덕
    • Tribology and Lubricants
    • /
    • 제13권1호
    • /
    • pp.82-87
    • /
    • 1997
  • The modern orthopaedics frequently uses the total hip replacement in the artificial hip joint. The wear in this joint requires a re-replacement of hip joints because it is under the severe load and friction conditions. To solve these problems the previous studies have been mainly focussed on the development of new materials. The research of new materials, however, needs much time and effort since it should be experimented for its bio-compatibility, friction, and wear characteristics. To reduce the work, in this study, the finite element analysis is applied to find new combinations of bio-materials in the total hip replacement which has the excellent contact characteristics. A non-linear FEM program MARC with 5-node axisymmetric element was used for analyzing the contact stresses between the hip joints. The computed results show that in case of acetabulum UHMWP has good characteristics, in femoral head, $Al_2O_3$, and in stem, Ti6Al4V.

Modelling of strain localization in a large strain context

  • Cescotto, S.;Li, X.K.
    • Structural Engineering and Mechanics
    • /
    • 제4권6호
    • /
    • pp.645-653
    • /
    • 1996
  • In order to avoid pathological mesh dependency in finite element modelling of strain localization, an isotropic elasto-plastic model with a yield function depending on the Laplacian of the equivalent plastic strain is implemented in a 4-node quadrilateral finite element with one integration point based on a mixed formulation derived from Hu-Washizu principle. The evaluation of the Laplacian is based on a least square polynomial approximation of the equivalent plastic strain around each integration point. This non local approach allows to satisfy exactly the consistency condition at each integration point. Some examples are treated to illustrate the effectiveness of the method.

A direct XFEM formulation for modeling of cohesive crack growth in concrete

  • Asferg, J.L.;Poulsen, P.N.;Nielsen, L.O.
    • Computers and Concrete
    • /
    • 제4권2호
    • /
    • pp.83-100
    • /
    • 2007
  • Applying a direct formulation for the enrichment of the displacement field an extended finite element (XFEM) scheme for modeling of cohesive crack growth is developed. Only elements cut by the crack is enriched and the scheme fits within the framework of standard FEM code. The scheme is implemented for the 3-node constant strain triangle (CST) and the 6-node linear strain triangle (LST). Modeling of standard concrete test cases such as fracture in the notched three point beam bending test (TPBT) and in the four point shear beam test (FPSB) illustrates the performance. The XFEM results show good agreement with results obtained by applying standard interface elements in FEM and with experimental results. In conjunction with criteria for crack growth local versus nonlocal computation of the crack growth direction is discussed.

탄성지반 위에 놓인 평판의 접촉영역 결정에 관한 연구 (A Study on the Determination of Contact Area of a Plate on Elastic Half-Space)

  • 정진환;이외득;김동석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.405-412
    • /
    • 1998
  • According to the relative stiffness between the half-space and plate or loading condition, some parts of the plate can be separated from the half-space. The finite element procedure to determine the contact area by considering the distribution of contact pressure between plate and the elastic half-space is developed. The vertical surface displacements of the elastic half-space can be obtained through the integrations of the Boussinesq's solution for a point load. The rectangular plate on the elastic half-space is modeled by the 8-node rectangular and 6-node triangular elements and the Mindlin plate theory is used in oder to consider the transverse shear effect. In this study, the contact area may be determined approximately by the analysis with rectangular elements. From this results, the mesh pattern is modified by using triangular and rectangular elements. The contact area can be determined by the new mesh pattern with a relatively sufficient accuracy.

  • PDF

테마파크 형 쇼핑센터의 공간구성에 관한 연구 - 저드파트너쉽의 설계 작품을 중심으로 - (An study on the Space Composition of the Theme Park-style Shopping Center - Focused on Designed Projects by Jerde Partnership -)

  • 하성주
    • 한국실내디자인학회논문집
    • /
    • 제16권6호
    • /
    • pp.144-151
    • /
    • 2007
  • The idea of shopping is changed from a purchase of merchandise to an experience of pleasure. This study is a space composition analysis for the introduction of theme in multi-plex shopping center design to reflect variable consumer trend and company marketing strategy, The study progressed through theoretical consideration and substance analysis about the shopping centers which had been designed by Jerd Partnership In Japan since 2000. The following is result. The path is a sole main street that is made of curve form, parallel and vertical circulating rout and movement of human being. It leads continuity. The node and landmarks have a circular court with typifier as powerful center, character of transition space and event for experience. It makes locational quality. The districts are composed of retail shops, restaurants and culture facilities and the edge is represented by closed vertical wall and parapet. It induces a domain. The characteristic of Jerde shopping center is an experience of theme environment through the path as betweenness with a story based on a main theme. It is mostly related nature or exotic element and is obviously represented at path and node. The node takes a round shape and bring about event as a court. The application of theme to the shopping center by Jerde has a significant meaning for place marketing.

철근 콘크리트 슬래브의 디자인이 동적 거동에 미치는 영향 (Effects of Design on the Dynamic Response of Reinforced Concrete Slabs)

  • 오경윤;조진구;최수명;홍종현
    • 한국농공학회논문집
    • /
    • 제49권6호
    • /
    • pp.47-54
    • /
    • 2007
  • This paper is on the research of the special character of the dynamic response according to a design of the clamped reinforced concrete slab. In this study, the 20-node solid element has been used to analyze the dynamic characteristics of RC slabs with clamped edges. The elasto-visco plastic model for material non-linearity and the smeared crack model have been adopted in the finite element formulation. The design factor, which affect the dynamic response of the reinforced concrete slab, are the steel layer thickness, steel layer depth, steel layout method, steel layout angle and the slab thickness and span ratio. The main purpose of this study was to find out the dynamic response of the reinforced concrete slab according to above variables. The reduction of deflection/thickness ratio appeared less than 2% when the slab thickness between 20 and 21cm. It is desirable that the slab thickness must be above 20-21cm. The reduction ratio of deflection is appeared greatly when the value of the span/thickness ratio is between 25 and 30. In conclusion, the steel layer depth and thickness had a little effect on deflection of the dynamic response, but had no effect on the steel layout angle.

고차 전단 변형이론에 의한 복합재료 적층판의 저속 충격응답 (Low-velocity impact response of laminated composite plates using a higher order shear deformation theory)

  • 이영신;박웅
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1365-1381
    • /
    • 1990
  • 본 연구에서는 Kant 등이 제안한 고차판이론의 C연속변위 유한요소 모델을 사 용하여 충격자와 적층판의 저속 충격 응답에 대하여 연구하여 그 결과를 Mindlin의 판 이론에 의한 계산 결과와 비교하고, 경계 조건의 영향 및 충격자의 충격속도, 질량변 화에 대한 접촉력의 변화를 고찰하고자 한다.