• Title/Summary/Keyword: 6-DOF Simulator

Search Result 57, Processing Time 0.025 seconds

A multivariable controller design of 6 DOF motion simulator (6자유도 운동재현기의 다변수 제어기 설계)

  • 이호영;강지윤;이교일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.449-454
    • /
    • 1994
  • The Stewart Platform is one example of a motion simulator which generater 6DOF motion in space by six actuators in parallel. The presented control methrol of 6DOF motion simulator is generally classified into two types, one is SISO and the other is MIMO control type. The SISO control can't compensate for external load variation and different dynamic behavior of 6DOF motion, trerefore this type don's control motion precisely. On the other hand, the MIMO control compensates for a interference of 6DOF motion because MIMO controller is designed with 6DOF motion simulator synamics. But MIMO control of motion simulator has a complexity of 6DOF displacement feedback, because in oder to obtain feedback value we must solve the forward kinematics using measurement of cylinder length or design a state estimator, unless measurement of 6DOF displacement is possible. In this paper, a multivariable controller using H .inf. optimal control theory is designed to consider a interference of 6DOF motion and to obtain robust,precise control of system. Also in order to solve the mentioned problem of MIMO control, this paper presents a modified MIMO control model which control 6DOF motion by using feedback of measurement od cylinder length.

  • PDF

Study on the Pose Control of a 6 DOF Simulator with Pneumatic Cylinder Driving Apparatus (공기압실린더 구동장치를 이용한 6자유도 시뮬레이터의 자세제어에 관한 연구)

  • Jeong, J.H.;Ji, S.W.;Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.59-65
    • /
    • 2007
  • In this study, 6-DOF simulator using pneumatic cylinder driving apparatus was manufactured because a pneumatic cylinder driving apparatus is superior to electric driving motor and hydraulic actuator, which used in traditional 6-DOF simulator, in competitive price and acceleration performance, and, 6-DOF motion can be realized at a low price in case that relatively low load is imposed on the simulator. The possible range of pose control of the simulator was investigated by inverse kinematics, and, it was controlled by a linear controller derived from linear model of the simulator. The Experimental results show that the simulator follows given coordinate well.

  • PDF

Development of a 6DOF Motion Platform for the Tilting Train Simulator (틸팅 차량용 시뮬레이터를 위한 6자유도 운동판 개발)

  • Kim Nam-Po;Song Young-Soo;Han Seong-Ho;Choi Kang-Yeon;Kim Jung-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.1
    • /
    • pp.27-33
    • /
    • 2005
  • This paper presents a development of 6DOF motion platform far a tilting train simulator. The tilting train simulator will be used to verify the tilting electronics and tilting control algorithm which are to be applied the Korean 180km/h tilting train. The tilting train simulator is composed of a 6-axis motion platform, a track generation system, a graphic user interface, and a visualization system with 1600mm-diameter dome screen. In this study, the 6DOF motion platform for a tilting train simulator has been designed and manufactured. The motion platform developed is a motion platform of Stewart type. The inverse kinematic analysis has been performed to determine the length of the links of the platform. Furthermore, the specification of the motors have been evaluated by the equation of motion of the platform.

Study on real time controller design of heavy load 6-DOF mition simulator (대부하 6자유도 운동 시뮬레이터의 실시간 제어기 설계에 관한 연구)

  • 김영대;강석종;이상범;박정호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.13-16
    • /
    • 1989
  • The paper, introduce the real time controller Design method of heavy load 6-DOF motion simulator. And also, introduce the Geometric design of 6-DOF Motion generation, real time control A algorithm and the configuration method of real time controller H/W and S/W.

  • PDF

Real-time system control for the 6-DOF simulation (6-DOF 시뮬레이터의 real-time 시스템 제어에 관한 연구)

  • 김영대;김충영;백인철;민성기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.17-21
    • /
    • 1989
  • 6-DOE simulator system is designed to real-time processing for motion control, data acquisition, image generation and image processing etc.. In this paper, we introduce hardware and software design technologies for distributed processing, event-trapping, system monitoring and time scheduling procedure in 6-DOF simulator system design.

  • PDF

A Controller Design and Performance Evaluation for 6 DOF Driving Simulator (6자유도 주행 시뮬레이터 구동을 위한 제어기 설계 및 성능평가)

  • Kang, Jin Gu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • In this paper Vehicle driving simulator have been used in the development and modification of models. A real-time simulation system and washout algorithm for an excavator have been developed for a driving simulator with six degrees of freedom. An interesting question, "how the 6 DOF Driving Simulator can be controlled optimally for the various tasks?" is not easy to be answered. This paper presents the hardware and software developed for a driving simulator of construction vehicle. A simulator can reduce cost and time a variety of driving simulations in the laboratory. Using its 6 DOF Simulator can move in various modes, and perform dexterous tasks. Driving simulators have begun to proliferate in the automotive industry and the associated research community. This effort involves the real-time dynamic of wheel-type excavator the design and manufacturing of the Stewart platform an integrated control system of the platform and three-dimensional graphic modeling of the driving environments.

A study on robust multivariable control of stewart platform type motion simulator (스튜어트 플랫폼 방식 운동재현기의 다변수 견실제어에 관한 연구)

  • 정규홍;박철규;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.736-741
    • /
    • 1992
  • The Stewart platform is one example of a motion simulator which generates 6 DOF motion in space by 6 actuators connected in parallel. The present SISO controllers are designed to track displacement command of each actuator computed from reference 6 DOF motion of platform by Stewart platform inverse kinematics. But this type of control can't cope with external load variation, geometric configuration of motion simulator, and different dynamic behavior of 6 DOF motion. In this paper, a multivariable controller using H- optimal control theory is designed for linerized simulator model with each actuator driving force as control input and platform 6 DOF motion as measured output. Nonlinear simulation result of the H$_{\infty}$ MIMO controller is not satisfied in steady-state characteristics. But the proposed H$_{\infty}$ + PI control scheme shows acceptable performance.e.e.

  • PDF

The Research of 2 DOF 3D Motion Simulator (2 DOF 3D 운동 시뮬례이터 실험)

  • 김영진;최명환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.260-260
    • /
    • 2000
  • In this work, we have developed a 2 degree of freedom(DOF) motion simulator that can generate the sensation of motion in a 6 DOF space. The motion base has the DOF of roll and pitch, and the purpose of the motion base is to create the sensation of riding a vehicle in a 3D space by controlling the motion base. The dynamics of the mechanism was analysed and the optimal design of the motion base mechanism has been reached. The prototype motion base mechanism was developed and tested. The multi-axis motion controller(MMC) was used to control the two ac servo motors that drive the roll and pitch motion.

  • PDF

Development of 6-DOF Simulator for Active Engine Mounting System (능동형 엔진 마운트 성능 평가를 위한 6축 시뮬레이터 구축)

  • Kim, Jeong-Hoon;Kim, Jae-San;Lee, Han-Dong;Park, Tae-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.520-525
    • /
    • 2011
  • As worldwide concern stands on global warming and greenhouse gases from internal combustion engine, the interests in technologies for a highly efficient powertrain has been increased. Concurrently the investigation to improve the deteriorated NVH, a by-product of energy efficient powertrain, is conducted seriously. The NVH performance of a new type of active engine mount that offers increased advantages over a passive hydraulic mount is examined using a newly developed 6-DOF simulator. The simulator is in the shape of Hexapod Stewart Platform adopting LEMA, a new type of actuator which is patented and commercialized by ACT Inc,, the world wide leader in the design, development, and manufacture of high performance linear electro-magnetic actuators for active vibration control. The target vibration signals of an aimed vehicle at four engine mounts are measured and simulated by 6-DOF simulator at the laboratory. The resulting NVH performances of the new active mounting system at a vehicle and on a simulator are examined and compared. Even though the active mount performance of lab test demonstrates less effective than the result of a real vehicle test, vibration reduction is identified through the simulator.

  • PDF

Implementation of 3D Motion Simulator with Two Degrees of Freedom (2자유도를 갖는 3차원 운동 시뮬레이터 연구)

  • Choi, Myoung-Hwan;Kim, Young-Jin
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.81-88
    • /
    • 2001
  • In this work, we have developed a 2 degrees of freedom(DOF) motion simulator that can generate the sensation of motion in a 6 DOF space. The motion base has the DOF of roll and pitch, and the purpose of the motion base is to create the sensation of riding a vehicle in a 3D space by controlling the motion base. The dynamics of the mechanism was analysed and the optimal design of the motion base mechanism has been reached. The prototype motion base mechanism was developed and tested. The multi-axis motion controller(MMC) was used to control the two AC servo meters that drive the roll and pitch motion.

  • PDF