• 제목/요약/키워드: 6-Axis articulated Robot

검색결과 23건 처리시간 0.015초

Bezier Spline을 이용한 용접 로봇의 새로운 Weaving Motion 궤적 생성 알고리즘 (A New Planning Algorithm of Weaving Trajectory Using Bezier Spline for A Welding Robot)

  • 정원지;김대영;서영교;홍형표;홍대선
    • 한국공작기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.113-118
    • /
    • 2004
  • In this paper, we propose a new weaving trajectory algorithm for the arc welding of a articulated manipulator. The algorithm uses the theory of Bezier spline. We make a comparison between the conventional algorithms using Catmull-Rom curve and the new algorithms using Bezier spline. The proposed algorithm has been evaluated based on the MATLAB environment in order to illustrate its good performance. Through simulations, the proposed algorithm can result in high-speed and flexible weaving trajectory planning so that it's trajectory cannot penetrate into a base metal compared to the conventional algorithm using Catmull-Rom curve.

선체 소조립 용접용 로봇 시스템 개발 (Development of sub-assembly welding robot system in shipbuilding)

  • 강성원;윤호중;김동호;김강욱;김영주;차주용;이상범;이종건;권순창;김수호
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년 추계학술발표대회 개요집
    • /
    • pp.101-103
    • /
    • 2006
  • DSME has developed Sub-assembly Welding Robot System(SWRS) in order to increase the productivity of arc welding and to improve hazard and unclean environments in shipbuilding. DSME's SWRS includes a number of equipments such as four overhanging 6-axis articulated robot manipulators(10kg pay-load), gantry system, vision system detecting the workpiece automatically, and OLP system using the CAD data and a central control system integrating an anti-collision module. The SWRS was installed in CAS(Component Assembly Shop) of DSME's OKPO shipyard in August 2006, and now SWRS is running well in site.

  • PDF

중력보상장치 설계계수를 고려한 고가반 로봇설계에 관한 연구 (Study on Design of Heavy Payload Robot Considering Design Factor of Gravity Compensator)

  • 이도승;이호수;표상훈;윤정원;류성기
    • 한국기계가공학회지
    • /
    • 제18권5호
    • /
    • pp.23-28
    • /
    • 2019
  • In recent years, medium- to large-scale transportation machinery and machine tool manufacturing process lines have shown a trend toward centralization, softening, lightening, and slimming to reduce costs and increase productivity. This has increased the demand for vertical articulated robots. When developing and introducing a heavy weight-handling robot that can be easily applied to existing production lines, it is expected to have a great effect in securing industrial competitiveness by solving industrial issues such as the decreased productivity and increased risk of accidents due to work involving heavy lifting. In this study, we design a 6-axis robot mechanism with a heavy load-handling capacity of 700kg or more for large-sized materials of various types supplied in small quantities.