• Title/Summary/Keyword: 6 MV

Search Result 870, Processing Time 0.028 seconds

A Study on Photon Spectrum in Medical Linear Accelerator Based on MCNPX (MCNPX를 이용한 의료용 선형가속장치의 광자 스펙트럼에 관한 연구)

  • Park, Euntae;Lee, Dongyeon;Ko, Seongjin;Kim, Junghoon;Kang, Sesik
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.5
    • /
    • pp.249-254
    • /
    • 2014
  • Medical linear accelerator is used for radiotherapy since it was developed in 1952, the utilization rate is further increased. It is used high energy radiotherapy using the energy of the photon of 6 MeV or more is universal at present, but the creation of the neutron by photonuclear reaction cause a problem that is radiation exposure of patients and operators. Therefore, in this study, to analyze the spectrum of the photon beam of 6 to 24 MV that occurred in the medical linear accelerator using the Monte Carlo code MCNPX, the number of photons of 7.41 MeV or more, which is a neutron production threshold energy of tungsten and average energy. The result of 24 MV in the beginning and the 8 MV was 0.59% of the total number of detected photons and it was founded that the number of photons are increased which are possible to cause the photonuclear reaction.

A Monte Carlo Study of Dose Enhancement with kilovoltage and megavoltage photons (몬테칼로 기법을 이용한 kV, MV X선에서의 선량증가 효과 비교 평가)

  • Hwang, ChulHwan;Im, In-Chul;Kim, Jung-Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.2
    • /
    • pp.87-94
    • /
    • 2017
  • Monte Carlo simulations were used to assess dose enhancement effects for 60-, 90-, 120-, and 150-kV X-rays, and for 6- and 15-MV X-rays. The MCNPX code was used for a computer simulation of the ICRU slab phantom, and gold, gadolinium, and iron oxide (Fe2O3) were employed as dose enhancement agents. In consideration of the buildup region of the incident energy, agent concentrations of 5, 10, 15, and 20 mg/g were inserted on the surface of the phantom at a depth of 5 cm. Based on baseline values obtained in the absence of dose enhancement agents, a quantitative analysis was performed by evaluating depth-dependent changes in the absorbed energy and the dose enhancement factor (DEF). A higher concentration of dose enhancement agents led to a greater dose enhancement effect with iron oxide, gadolinium, and gold in descending order. For kilovoltage (kV) X-rays, as the incident energy was decreased and as the energy became closer to the ionization potential of the atoms in the enhancement agent, the dose enhancement effect increased. In the megavoltage (MV) X-ray range, dose enhancement was higher at 6 MV compared with 15 MV. However, the overall dose enhancements were significantly lower compared to the results obtained with kV X-rays.

Application of Off-axis Correction Method for EPID Based IMRT QA (EPID를 사용한 세기조절방사선치료의 정도관리에 있어 축이탈 보정(Off-axis Correction)의 적용)

  • Cho, Ilsung;Kwark, Jungwon;Park, Sung Ho;Ahn, Seung Do;Jeong, Dong Hyeok;Cho, Byungchul
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.317-325
    • /
    • 2012
  • The Varian PORTALVISION (Varian Medical Systems, US) shows significant overresponses as the off-center distance increases compared to the predicted dose. In order to correct the dose discrepancy, the off-axis correction is applied to VARIAN iX linear accelerators. The portal dose for $38{\times}28cm^2$ open field is acquired for 6 MV, 15 MV photon beams and also are predicted by PDIP algorithm under the same condition of the portal dose acquisition. The off-axis correction is applied by modifying the $40{\times}40cm^2$ diagonal beam profile data which is used for the beam profile calibration. The ratios between predicted dose and measured dose is modeled as a function of off-axis distance with the $4^{th}$ polynomial and is applied to the $40{\times}40cm^2$ diagonal beam profile data as the weight to correct measured dose by EPID detector. The discrepancy between measured dose and predicted dose is reduced from $4.17{\pm}2.76$ CU to $0.18{\pm}0.8$ CU for 6 MV photon beam and from $3.23{\pm}2.59$ CU to $0.04{\pm}0.85$ CU for 15 MV photon beam. The passing rate of gamma analysis for the pyramid fluence patten with the 4%, 4 mm criteria is improved from 98.7% to 99.1% for 6 MV photon beam, from 99.8% to 99.9% for 15 MV photon beam. IMRT QA is also performed for randomly selected Head and Neck and Prostate IMRT plans after applying the off-axis correction. The gamma passing rare is improved by 3% on average, for Head and Neck cases: $94.7{\pm}3.2%$ to $98.2{\pm}1.4%$, for Prostate cases: $95.5{\pm}2.6%$, $98.4{\pm}1.8%$. The gamma analysis criteria is 3%, 3 mm with 10% threshold. It is considered that the off-axis correction might be an effective and easily adaptable means for correcting the discrepancy between measured dose and predicted dose for IMRT QA using EPID in clinic.

Partial Discharge Monitoring for $SF_6$ Insulated MV Switchgear using UHF sensors (UHF Sensor를 이용한 SF6 절연 MV 개폐기의 부분방전 검출 시스템)

  • Lee, Do-Hoon;Kang, Won-Jong;Shin, Yang-Sop;Kim, Young-Geun;Oh, Il-Sung;Kim, Dong-Myung;Kwon, Tae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.2040-2041
    • /
    • 2007
  • In this paper, the UHF PD(Partial Discharge) sensors for $SF_6$ insulated MV $SF_6$ switchgear have been proposed and related investigations have been performed in order to detect the PD which were produced inside the MV $SF_6$ switchgear. Firstly, the internal type UHF PD sensor based on spiral antenna theory has been developed. This type sensor is highly sensitive and has lowly effect on by on-site noise. Secondly, the external type UHF PD sensor was developed based on log periodic antenna concept. This type sensor is removable and detectable for operating switchgear. These sensors were designed and simulated using RF simulation tool. In order to verify the sensitivity of these sensors, we performed the on-site test using the mock-up switchgears including the artificial defects which were the protrusion on high voltage conductor, free moving metal particle and surface defect on insulator. These mock-up switchgear were installed on the test distribution line.

  • PDF

Use of Triton X-100 and Sephacryl S-500 HR for the Purification of Cymbidium Mosaic Virus from Orchid Plants

  • Han, Jung-Heon;La, Yong-Joon;Lee, Cheol-Ho
    • The Plant Pathology Journal
    • /
    • v.15 no.1
    • /
    • pp.34-37
    • /
    • 1999
  • Cymbidium mosaic virus (CyMV) was purified from CyMV infected orchid plant leaves by Sephacryl S-500 HR column chromatography. Partial purification was done by solubilization with Triton X-100 (alkylphenoxypolyethoxy ethanol) and precipitation with polyethylene glycol (PEG 6,000) followed by ultracentrifugation on 30% sucrose cushion. Based on the spectrophotometric analysis, 33 mg of CyMV could be obtained form 100 g of CyMV-infected orchid plant leaves. The purified CyMV represented one distinct homogeneous band by SDS-PAGE, and electron microscopy revealed that it was highly homogeneous and not fragmented. Bioassay demonstrated that the purified CyMV had a normal infectivity to Chenopodium amaranticolor and orchid plants. Based on these results, the purification method in this work could be served as an improved method for the purification of CyMV and similar viruses with good yield, high purity and native integrity.

  • PDF

Channel Electrode Voltammetric and In Situ Electrochemical ESR Studies of Comproportionation of Methyl Viologen in Acetonitrile

  • Lee, Ji U;John C. Eklund;Robert A. W. Dryfe;Richard G. Compton
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.162-167
    • /
    • 1996
  • Two redox processes of methyl viologen (+2/+, +/0) in acetonitrile were investigated by using channel electrode voltammetric and in situ electrochemical ESR methods. Two separated unequal plateau currents of the first (+2/+) and second (+/0) redox processes of the viologen were observed in the channel electrode voltammograms and showed a cube-root depedndence on the electrolyte flow rate, respectively. The simple Levich analysis resulted in two different diffusion coefficients of $D_{+2}=2.2{\times}10^{-5}\;cm^2/s$ and $D_+=3.0{\times}10^{-5}cm^2/s$ from the limiting currents. In situ electrochemical ESR studies were performed for the monocation radicals generated at the potentials of the two plateau currents in the electrolyte flow range $1.3{\times}10^{-1}{\geq}v_f{\geq}2.7{\times}10^{-3}\;cm^3/s$. Backward implicitfinite difference method was employed to simulate the electrochemical kinetic problem of two sequential electron transfers ($MV^{+2}+e{\leftrightarrows}MV^+,\;MV^{+}+e{\leftrightarrows}MV^0$) coupled with reversible comproportionation ($MV^{2+}+MV^0{{\leftrightarrows}^{k_f}_{k_b}}2MV^+$). $k_f$ was found to be greater than ($10^6M^{-1}s^{-1}.

Evaluation of Dosimetric Leaf Gap (DLG) at Different Depths for Dynamic IMRT (동적 세기조절방사선치료에서 깊이에 따른 DLG변화 분석)

  • Chang, Kyung Hwan;Kwak, Jungwon;Cho, Byungchul;Jeong, Chiyoung;Bae, Jae Beom;Yoon, Sang Min;Lee, Sang-wook
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.153-159
    • /
    • 2015
  • This study is to evaluate thedosiemtric leaf gap (DLG) at different depths for dynamic intensity-modulated radiation therapy (IMRT) in order to evaluate the absolute dose and dose distribution according to the different positions of tumors and compare the measured and planned the multileaf collimator (MLC) transmission factor (T.F.) and DLG values. We used the 6 MV and 15 MV photon beam from linear accelerator with a Millenium 120 MLC system. After the import the DICOM RT files, we measured the absolute dose at different depths (2 cm, 5 cm, 10 cm, and 15 cm) to calculate the MLC T. F. and DLG. For 6 MV photon beam, the measured both MLC T. F. and DLG were increased with the increase the measured depths. When applying to treatment planning systemas fixed transmission factor with its value measured under the reference condition at depth of 5 cm, although the difference fixed and varied transmission factor is not significant, the dosiemtric effect could be presented according to the depth that the tumor is placed. Therefore, we are planning to investigate the treatment planning system whichthe T. F. and DLG factor according to at the different depths can be applied in the patient-specific treatment plan.

Survey of the Incidence of Viral Infections in Calanthe spp. and Characterization of a GW Isolate of Cymbidium mosaic virus in Korea

  • Park, Chung Youl;Baek, Da Some;Oh, Jonghee;Choi, Jong-Yoon;Bae, Dae Hyeon;Kim, Jeong-Seon;Jang, Gil-Hun;Lee, Su-Heon
    • Research in Plant Disease
    • /
    • v.22 no.2
    • /
    • pp.65-71
    • /
    • 2016
  • Cymbidium mosaic virus (CymMV) is a major virus infecting orchid plants and causing economic loss. In this study, the incidence of viral infection in Calanthe spp. at the Korean Institute of Calanthe was investigated using reverse transcription polymerase chain reaction. The CymMV infection rate was 42%, and the two viruses Odontoglossum ringspot virus and Cucumber mosaic virus had frequencies of 8% and 2%, respectively. Additionally, we characterized an isolate of CymMV, CymMV-GW, using biological tests and examined the nucleotide sequence properties of its complete genome. CymMV-GW induced chlorotic ringspots and chlorotic spot symptoms in inoculated leaves of Chenopodium amaranticolor and Nicotiana benthamiana, respectively. In this study, we have for the first complete genome sequence of CymMV-GW in Korea. The CymMV-GW genome was 6,225 nucleotides in length, excluding the poly-(A) tail, and showed whole-genome nucleotide and amino acid sequence identities of 97.7% and 100%, respectively, with the NJ-1 isolate of CymMV. Here, we report the complete genome sequence of the CymMV-GW isolate and viral infection rates for Calanthe spp. in Korea.

Analysis of Low MU Characteristics of Siemens Primus Linear Accelerator using Diode Arrays for IMRT QA (다이오드 어레이를 이용한 Siemens사의 Primus 선형가속기의 저 MU 특성 분석)

  • Kim, Ju-Ree;Lee, Re-Na;Lee, Kyung-Ja
    • Progress in Medical Physics
    • /
    • v.19 no.3
    • /
    • pp.164-171
    • /
    • 2008
  • One of the most important task in commissioning intensity modulated radiotherapy (IMRT) into a clinic is the characterization of dosimetry performance under small monitor unit delivery conditions. In this study, method of evaluating dose monitor linearity, beam flatness and symmetry, and MLC positioning accuracy using a diode array is investigated. Siemens Primus linear accelerator (LA) with 6 and 10 MV x-rays was used to deliver radiation and the characteristics were measured using a multi array diodes. Monitor unit stabilities were measured for both x-ray energies. The dose linearity errors for the 6 MV x-ray were 2.1, 3.4, 6.9, 8.6, and 15.4 % when 20 MU, 10 MU, 5 MU, 4 MU, and 2 MU was delivered, respectively. Greater errors were observed for 10 MV x-rays with a maximum of 22% when 2 MU was delivered. These errors were corrected by adjusting D1_C0 values and reduced to less than 2% in all cases. The beam flatness and symmetry were appropriate without any correction. The picket fence test performed using diode array and film measurement showed similar results. The use of diode array is a convenient method in characterizing beam stability, symmetry and flatness, and positioning accuracy of MLC for IMRT commissioning. In addition, adjustment of D1-C0 value must be performed when a Siemens LA is used for IMRT because factory value usually gives unacceptable beam stability error when the MU/segment is smaller than 20.

  • PDF

Clinical Implications of High Definition Multileaf Collimator (HDMLC) Dosimetric Leaf Gap (DLG) Variations

  • Chang, Kyung Hwan;Ji, Yunseo;Kwak, Jungwon;Kim, Sung Woo;Jeong, Chiyoung;Cho, Byungchul;Park, Jin-hong;Yoon, Sang Min;Ahn, Seung Do;Lee, Sang-wook
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.111-116
    • /
    • 2016
  • This study is to evaluate the dosimetric impact of dosimetric leaf gap (DLG) and transmission factor (TF) at different measurement depths and field sizes for high definition multileaf collimator (HD MLC). Consequently, its clinical implication on dose calculation of treatment planning system was also investigated for pancreas stereotactic body radiation therapy (SBRT). The TF and DLG were measured at various depths (5, 8, 10, 12, and 15 cm) and field sizes ($6{\times}6$, $8{\times}8$, and $10{\times}10cm^2$) for various energies (6 MV, 6 MV FFF, 10 MV, 10 MV flattening filter free [FFF], and 15 MV). Fifteen pancreatic SBRT cases were enrolled in the study. For each case, the dose distribution was recomputed using a reconfigured beam model of which TF and DLG was the closest to the patient geometry, and then compared to the original plan using the results of dose-volume histograms (DVH). For 10 MV FFF photon beam, its maximum difference between 2 cm and 15 cm was within 0.9% and it is increased by 0.05% from $6{\times}6cm^2$ to $10{\times}10cm^2$ for depth of 15 cm. For 10 MV FFF photon beam, the difference in DLG between the depth of 5 cm and 15 cm is within 0.005 cm for all field sizes and its maximum difference between field size of $6{\times}6cm^2$ and $10{\times}10cm^2$ is 0.0025 cm at depth of 8 cm. TF and DLG values were dependent on the depth and field size. However, the dosimetric difference between the original and recomputed doses were found to be within an acceptable range (<0.5%). In conclusion, current beam modeling using single TF and DLG values is enough for accurate dose calculation.