• Title/Summary/Keyword: 6 DOF Trajectory

Search Result 56, Processing Time 0.021 seconds

Development of an Off-line 6-DOF Simulation Program for Store Separation Analysis (외부 장착물 분리 해석을 위한 Off-line 6-DOF 시뮬레이션 프로그램 개발)

  • Kwak, Ein-Keun;Shin, Jae-Hwa;Lee, Seung-Soo;Choi, Kee-Young;Hyun, Jae-Soo;Kim, Nam-Gyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1252-1257
    • /
    • 2009
  • Off-line 6-DOF simulation program for store separation analysis has been developed. The developed program enables to predict a trajectory of a store from the database which was constructed by wind tunnel testing or CFD analysis. The flow angle method was applied to the program for predicting aerodynamic coefficients from the database and the ejector forces and constraints were enabled to incorporate the equations of motion for computing the trajectory. Using the program, the trajectories were calculated and the results are compared with the CTS results.

The 6-DOF Parallel Manipulator Having the Specific Trajectory Based on the Kinematic Isotropy (기구학적 등방성을 고려한 특정작업경로를 가진 6-DOF 병렬형 매니퓰레이터)

  • Yang, Hyun-Ik;Xu, Yuan-Ge
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.495-502
    • /
    • 2004
  • In this paper, kinematic structure of parallel manipulator having 6-DOF is determined to follow the specific trajectory represented by several curves expressed by the parametric variable functions. In addition, the parallel manipulator is designed to have a high dexterity by considering a kinematic isotropy which can stabilize the motion of the moving platform in the restricted workspace.

Analytical Inverse Kinematics Algorithm for a 7 DOF Anthropomorphic Robot Arm Using Intuitive Elbow Direction (7자유도 인간형 로봇 팔의 직관적인 팔꿈치 위치 설정이 가능한 역기구학 알고리즘)

  • Kim, Young-Loul;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 2011
  • Control and trajectory generation of a 7 DOF anthropomorphic robot arm suffer from computational complexity and singularity problem because of numerical inverse kinematics. To deal with such problems, analytical methods for a redundant robot arm have been researched to enhance the performance of inverse kinematics. In this research, we propose an analytical inverse kinematics algorithm for a 7 DOF anthropomorphic robot arm. Using this algorithm, it is possible to generate a trajectory passing through the singular points and intuitively move the elbow without regard to the end-effector pose. Performance of the proposed algorithm was verified by various simulations. It is shown that the trajectory planning using this algorithm provides correct results near the singular points and can utilize redundancy intuitively.

Control Strategy for Obstacle Avoidance of an Agricultural Robot (농용 로봇의 장애물 회피알고리즘)

  • 류관희;김기영;박정인;류영선
    • Journal of Biosystems Engineering
    • /
    • v.25 no.2
    • /
    • pp.141-150
    • /
    • 2000
  • This study was carried out to de develop a control strategy of a fruit harvesting redundant robot. The method of generating a safe trajectory, which avoids collisions with obstracles such as branches or immature fruits, in the 3D(3-dimension) space using artificial potential field technique and virtual plane concept was proposed. Also, the method of setting reference velocity vectors to follow the trajectory and to avoid obstacles in the 3D space was proposed. Developed methods were verified with computer simulations and with actual robot tests. Fro the actual robot tests, a machine vision system was used for detecting fruits and obstacles, Results showed that developed control method could reduce the occurrences of the robot manipulator located in the possible collision distance. with 10 virtual obstacles generated randomly in the 3 D space, maximum rates of the occurrences of the robot manipulator located in the possible collision distance, 0.03 m, from the obstacles were 8 % with 5 degree of freedom (DOF), 8 % with 6-DOF, and 4% with 7-DOF, respectively.

  • PDF

6 - DOF Trajectory M&S of Spin - stabilized Munitions using Matlab Simulink (Matlab Simulink를 이용한 회전안정탄의 6 자유도 탄도 모델링)

  • Kim, Ki Pyo;Yun, Sang Yong;Kim, Jin Seuk;Hong, Jong Tai
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.39-44
    • /
    • 2006
  • With the advent of low cost, miniature and high-g hardened inertial sensors and actuators, many kind of smart munitions are becoming practical such as 1D or 2D TCM, SFM, Range Extended GPS guided munitions and so on. They have more complicated trajectory control algorithm than conventional munitions'. Therefore it is necessary to study the complicated operation algorithm of smart munitions with M&S in advance of developing them. The purpose of this paper is to introduce a practical M&S method to study an operation concept of smart munitions using PRODAS and Matlab.

  • PDF

Control Progress of 6-DOF Robot using Adaptive Control (적응제어를 이용한 6자유도 로봇의 제어향상을 위한 연구)

  • 김병수;김규로;이순걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.574-577
    • /
    • 2000
  • The purpose of robot manipulator control is to make for manipulator take a trace of pre-planned trajectory. In this study, the algorithm of MRAC(Model Reference Adaptive Control) on reference to adaptive control theory was studied. The experiments were performed on 6-DOF robot manipulator with respect to p-d(proportional-differential) controller and adaptive controller. The property of adaptive control was studied and its efficiency proved by being compared to p-d controller.

  • PDF

Trajectory Optimization for Nonlinear Tracking Control in Stratospheric Airship Platform (비선형 추종제어를 위한 성층권비행선의 궤적 최적화)

  • Lee, Sang-Jong;Bang, Hyo-Choong;Chang, Jae-Won;Seong, Kie-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.42-54
    • /
    • 2009
  • Contrast to the 6-DOF nonlinear dynamic modeling of nonlinear tracking problem, 3-DOF point-mass modeling of flight mechanics is efficient and adequate for applying the trajectory optimization problem. There exist limitations to apply an optimal trajectory from point-mass modeling as a reference trajectory directly to conduct the nonlinear tracking control, In this paper, new matching trajectory optimization scheme is proposed to compensate those differences of mismatching. To verify performance of proposed method, full ascent three-dimensional flight trajectories are obtained by reflecting the real constraints of flight conditions and airship performance with and without jet stream condition. Then, they are compared with the optimal trajectories obtained from conventional method.

Unguided Rocket Trajectory Analysis under Rotor Wake and External Wind (로터 후류와 외풍에 따른 무유도 로켓 궤적 변화 해석)

  • Kim, Hyeongseok;Chae, Sanghyun;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.41-51
    • /
    • 2018
  • Downwash from helicopter rotor blades and external winds from various maneuvering make an unguided rocket change its trajectory and range. For the prediction of the trajectory and range, it is essential to consider the downwash effect. In this study, an algorithm was developed to calculate 6-Degree-Of-Freedom(6 DOF) forces and moments exerting on the rocket, and total flight trajectory of a 2.75-inch unguided rocket in a helicopter downwash flow field. Using Actuator Disk Model(ADM) analysis result, the algorithm could analyze the entire trajectory in various initial launch condition such as launch angle, launch velocity, and external wind. The algorithm that considered the interference between a fuselage and external winds could predict the trajectory change more precisely than inflow model analysis. Using the developed algorithm, the attitude and trajectory change mechanism by the downwash effect were investigated analyzing the effective angle of attack change and characteristics of pitching stability of the unguided rocket. Also, the trajectory and range changes were analyzed by considering the downwash effect with external winds. As a result, it was concluded that the key factors of the rocket range change were downwash area and magnitude which effect on the rocket, and the secondary factors were the dynamic pressure of the rocket and the interference between a fuselage and external winds. In tailwind case which was much influential on the range characteristics than other wind cases, the range of the rocket rose as increasing the tailwind velocity. However, there was a limit that the range of the rocket did not increase more than the specific tailwind velocity.

Optimal Trajectory Generation for Biped Robots Walking Up-and-Down Stairs

  • Kwon O-Hung;Jeon Kweon-Soo;Park Jong-Hyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.612-620
    • /
    • 2006
  • This paper proposes an optimal trajectory generation method for biped robots for walking up-and-down stairs using a Real-Coded Genetic Algorithm (RCGA). The RCGA is most effective in minimizing the total consumption energy of a multi-dof biped robot. Each joint angle trajectory is defined as a 4-th order polynomial of which the coefficients are chromosomes or design variables to approximate the walking gait. Constraints are divided into equalities and inequalities. First, equality constraints consist of initial conditions and repeatability conditions with respect to each joint angle and angular velocity at the start and end of a stride period. Next, inequality constraints include collision prevention conditions of a swing leg, singular prevention conditions, and stability conditions. The effectiveness of the proposed optimal trajectory is shown in computer simulations with a 6-dof biped robot model that consists of seven links in the sagittal plane. The optimal trajectory is more efficient than that generated by the Modified Gravity-Compensated Inverted Pendulum Mode (MGCIPM). And various trajectories generated by the proposed GA method are analyzed from the viewpoint of the consumption energy: walking on even ground, ascending stairs, and descending stairs.

Design of Trajectory Following Controller for Parafoil Airdrop System (패러포일 투하 시스템의 궤적 추종 제어기의 설계)

  • Yang, Bin;Choi, Sun-Young;Lee, Joung-Tae;Lim, Dong-Keun;Hwang, Chung-Won;Park, Seung-Yub
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.3
    • /
    • pp.215-222
    • /
    • 2014
  • In this paper, parafoil airdrop system has been designed and analyzed. 6-degrees of freedom (6-DOF) model of the parafoil system is set up. Nonlinear model predictive control (NMPC) and Proportion integration differentiation (PID) methods were separately applied to adjust the flap yaw angle. Compared the results of setting time and overshoot time of yaw angle, it is found that the of yaw angle is more stable by using PID method. Then, trajectory following controller was designed based on the simulation results of trajectory following effects, which was carried out by using MATLAB. The lateral offset error of parafoil trajectory can be eliminated by its lateral deviation control. The later offset deviation reference was obtained by the interpolation of the current planning path. Moreover, using the designed trajectory, the trajectory following system was simulated by adding the wind disturbances. It is found that the simulation result is highly agreed with the designed trajectory, which means that wind disturbances have been eliminated with the change of yaw angle controlled by PID method.