• Title/Summary/Keyword: 6 DOF Modeling

Search Result 64, Processing Time 0.02 seconds

Dynamic Interaction Analysis of Train and Bridge According to Modeling Methods of Maglev Trains (자기부상열차의 모델링방법에 따른 열차-교량의 동적상호작용 해석)

  • Jung, Myung-Rag;Min, Dong-Ju;Lee, Jun-Seok;Kwon, Soon-Duck;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.167-175
    • /
    • 2011
  • The purpose of this study is to examine the impact that change in speed and modeling methods has on maglevs' runnability. The study constructed equations of motion on 4-DOF, 6DOF, and 10-DOF vehicles respectively and carried out numerical analysis, applying 4th Runge Kutta method, in order to run six different model maglev as changing the vehicles speed on the same bridge that had 2000 to 1 deflection. The analysis revealed that maglev's runnability improved as speed was lower and the specific model had higher number of bogey and EMS.

Practical Design and Implementation Methodology for Disturbance Rejection Controller (외란 제거 제어기의 실제적인 설계 및 구현 방법)

  • Yeo Hee-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.37-47
    • /
    • 2005
  • This Paper proposes a practical design and implementation methodology for a disturbance rejection controller. In a 2 Degree-Of-Freedom (DOF) structure, disturbance rejection performance can be improved without a high gain in forward-loop controller which might cause unwanted side-effects in conventional controller. But, since design methodology of 2 DOF controller is originally derived from the 2 DOF theory, it is not easy to utilize fer various industrial applications. Disturbance observer is a simple, but very effective 2 DOF controller. In this paper, practical issues are discussed from basic idea of DOB to technical procedure for design and implementation. Additionally, a methods and their examples of experimental modeling are explained. The proposed method is demonstrated by two examples of linear-type motor systems.

  • PDF

A Controller Design and Performance Evaluation for 6 DOF Driving Simulator (6자유도 주행 시뮬레이터 구동을 위한 제어기 설계 및 성능평가)

  • Kang, Jin Gu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • In this paper Vehicle driving simulator have been used in the development and modification of models. A real-time simulation system and washout algorithm for an excavator have been developed for a driving simulator with six degrees of freedom. An interesting question, "how the 6 DOF Driving Simulator can be controlled optimally for the various tasks?" is not easy to be answered. This paper presents the hardware and software developed for a driving simulator of construction vehicle. A simulator can reduce cost and time a variety of driving simulations in the laboratory. Using its 6 DOF Simulator can move in various modes, and perform dexterous tasks. Driving simulators have begun to proliferate in the automotive industry and the associated research community. This effort involves the real-time dynamic of wheel-type excavator the design and manufacturing of the Stewart platform an integrated control system of the platform and three-dimensional graphic modeling of the driving environments.

3-Dimensional Path Planning and Guidance using the Dubins Curve for an 3-DOF Point-mass Aircraft Model (Dubins 곡선을 이용한 항공기 3자유도 질점 모델의 3차원 경로계획 및 유도)

  • O, Su-Hun;Ha, Chul-Su;Kang, Seung-Eun;Mok, Ji-hyun;Ko, Sangho;Lee, Yong-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In this paper, we integrate three degree of freedom(3DOF) point-mass model for aircraft and three-dimensional path generation algorithms using dubins curve and nonlinear path tracking law. Through this integration, we apply the path generation algorithm to the path planning, and verify tracking performance and feasibility of using the aircraft 3DOF point-mass model for air traffic management. The accuracy of modeling 6DOF aircraft is more accurate than that of 3DOF model, but the complexity of the calculation would be raised, in turn the rate of computation is more likely to be slow due to the increase of degree of freedom. These obstacles make the 6DOF model difficult to be applied to simulation requiring real-time path planning. Therefore, the 3DOF point-mass model is also sufficient for simulation, and real-time path planning is possible because complexity can be reduced, compared to those of the 6DOF. Dubins curve used for generating the optimal path has advantage of being directly available to apply path planning. However, we use the algorithm which extends 2D path to 3D path since dubins curve handles the two dimensional path problems. Control law for the path tracking uses the nonlinear path tracking laws. Then we present these concomitant simulation results.

Development of 6-DOF Equations of Motion for a Planning Boat Based on the Results of Sea Trial Tests

  • Jeon, Myung-Jun;Lee, Dong-Hyun;Yoon, Hyeon-Kyu
    • Journal of Navigation and Port Research
    • /
    • v.40 no.5
    • /
    • pp.231-239
    • /
    • 2016
  • In general, the attitude of a high-speed planning boat changes following a speed change. Since the hydrodynamic forces acting on a ship differ according to the change of its underwater shape, it is difficult to estimate its hydrodynamic force compared to that of a large commercial ship. In this paper, 6 Degrees Of Freedom (DOF) equations of motion that express the maneuvering motion of a planning boat are modeled by analyzing its motion characteristics based on various sea trial tests. Finally, a maneuvering simulation is carried out and a validation of the equations of motion is confirmed with the results of sea trial tests.

Modeling and Multivariable Control of a Novel Multi-Dimensional Levitated Stage with High Precision

  • Hu Tiejun;Kim Won-jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • This paper presents the modeling and multivariable feedback control of a novel high-precision multi-dimensional positioning stage. This integrated 6-degree-of-freedom. (DOF) motion stage is levitated by three aerostatic bearings and actuated by 3 three-phase synchronous permanent-magnet planar motors (SPMPMs). It can generate all 6-DOF motions with only a single moving part. With the DQ decomposition theory, this positioning stage is modeled as a multi-input multi-output (MIMO) electromechanical system with six inputs (currents) and six outputs (displacements). To achieve high-precision positioning capability, discrete-time integrator-augmented linear-quadratic-regulator (LQR) and reduced-order linearquadratic-Gaussian (LQG) control methodologies are applied. Digital multivariable controllers are designed and implemented on the positioning system, and experimental results are also presented in this paper to demonstrate the stage's dynamic performance.

Trajectory Optimization for Nonlinear Tracking Control in Stratospheric Airship Platform (비선형 추종제어를 위한 성층권비행선의 궤적 최적화)

  • Lee, Sang-Jong;Bang, Hyo-Choong;Chang, Jae-Won;Seong, Kie-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.42-54
    • /
    • 2009
  • Contrast to the 6-DOF nonlinear dynamic modeling of nonlinear tracking problem, 3-DOF point-mass modeling of flight mechanics is efficient and adequate for applying the trajectory optimization problem. There exist limitations to apply an optimal trajectory from point-mass modeling as a reference trajectory directly to conduct the nonlinear tracking control, In this paper, new matching trajectory optimization scheme is proposed to compensate those differences of mismatching. To verify performance of proposed method, full ascent three-dimensional flight trajectories are obtained by reflecting the real constraints of flight conditions and airship performance with and without jet stream condition. Then, they are compared with the optimal trajectories obtained from conventional method.

Optimum Design of a 3-DOF Ultra-Precision Positioning Mechanism Using Boosters (부스터를 이용한 3자유도 초정밀 위치결정 기구의 최적설계)

  • Han Seog Young;Yi Byung-Ju;Kim Seon Jung;Kim Jong O;Chung Goo Bong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.101-109
    • /
    • 2005
  • Ultra-precision positioning systems basically require high natural frequency and sufficient workspace. To cope with this requirement, flexure hinge mechanisms have been proposed. However, previous designs are hard to satisfy the functional requirements of the system due to difficulty in modeling and optimizing process applying an independent axiomatic design. Therefore, this paper proposes a new design and design-order based on semi-coupled axiomatic design. A planar 3 DOF parallel type micro mechanism is chosen as an exemplary device. Based on preliminary kinematic analysis and dynamic modeling of the system, an optimal design has been carried out. To check the effectiveness of the optimal parameters obtained from theoretical approach, simulation is performed by FEM. The simulation result shows that a natural frequency of 200.53Hz and a workspace of $2000{\mu}m{\times}2000{\mu}m$ can be ensured, which is in very close agreement with the specified goal of design.

Design of a Robust Precision Aerial Delivery System Soft Landing Algorithm (외란에 강인한 정밀공중물자수송시스템 연착륙 알고리즘 설계)

  • Kim, Taewook
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.77-87
    • /
    • 2022
  • The Precision Aerial Delivery System is an instrument designed to improve the poor landing accuracy of aerial delivery system with conventional circular parachutes, and is equipped with an Airborne Guidance Unit to safely transport supplies to the desired destination. Currently, the landing accuracy of the PADS product is reported as CEP50 100m and also differs significantly, depending on the actual topography and weather environment. In this study, HILS was constructed based on the 6DOF nonlinear modeling of PADS to analyze the maneuver characteristics of Ram Air Parachute under wind environments. By using the new algorithm a precision soft landing algorithm including Energy Management and Final Approach is designed. HILS results show that it is possible to achieve a precise soft landing within CEP50 40m, and it can be exploited to develop an actual PADS drop test.

Design and Modeling of a 6-dof Stage for Ultra-Precision Positioning (초정밀 구동을 위한 6 자유도 스테이지의 설계와 모델링)

  • Moon, Jun-Hee;Park, Jong-Ho;Pahk, Heui-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.106-113
    • /
    • 2009
  • A 6-DOF precision stage was developed based on parallel kinematics structure with flexure hinges to eliminate backlash, stick-slip and friction and to minimize parasitic motion coupled with motions in the other-axis directions. For the stage, lever linkage mechanism was devised to reduce the height of system for the enhancement of horizontal stiffness. Frequency response comparison between experimental results and mathematical model extracted from dynamics of the stage was performed to identify the system parameters such as spring constants and damping coefficients of actuation modules, which cannot be calculated accurately by analytic methods owing to their complicated structures. This newly developed precision stage and its identified model will be very useful for precision positioning and control because of its high accuracy and non-coupled movement.