• 제목/요약/키워드: 6 DOF Manipulator

검색결과 83건 처리시간 0.029초

6자유도 병렬형 모션 시뮬레이터 개발 (Development of a New 6-DOF Parallel-type Motion Simulator)

  • 김한성
    • 한국생산제조학회지
    • /
    • 제19권2호
    • /
    • pp.171-177
    • /
    • 2010
  • This paper presents the development of a new 6-DOF parallel-kinematic motion simulator. The moving platform is connected to the fixed base by six P-S-U (Prismatic-Spherical-Universal) serial chains. Comparing with the well-known Gough-Stewart platform-type motion simulator, it uses commercialized linear actuators mounted at the fixed base whereas a 6-UPS manipulator uses telescopic linear ones. Therefore, the proposed motion simulator has the advantages of easier fabrication and lower inertia over a 6-UPS counterpart. Furthermore, since most forces acting along the legs are transmitted to the structure of linear actuators, smaller actuation forces are required. The inverse position and Jacobian matrix are analyzed. In order to further increase workspace, inclined arrangement of universal joints is introduced. The optimal design considering workspace and force transmission capability has been performed. The prototype motion simulator and PC-based real-time controller have been developed. Finally, position control experiment on the prototype has been performed.

지능제어를 이용한 평면 여자유도 매니퓰레이터의 충돌제어에 관한 연구 (A Study on Impact Control of Planar Redundant Manipulator using A Intelligent Control)

  • 유봉수;구성완;조중선
    • 한국지능시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.787-796
    • /
    • 2008
  • 매니퓰레이터와 환경과의 충돌 시 충격량을 줄이기 위해서는 유효질량이 최소화되는 자세가 요구되므로 자체운동(self motion)을 통하여 이러한 자세를 유지해야 한다. 이때 여유자유도를 분해하기 위하여 관절 토크 국소 최소화 알고리즘을 이용할 수 있다. 본 논문에서는 매니퓰레이터와 환경과의 충돌 시 충격 및 손상을 줄이기 위해 기구학적인 여자유도를 이용하여 관절토크를 최소화시킴과 동시에 충돌을 최소화시키는 새로운 제어 알고리즘을 제안한다 이 알고리즘은 기존의 국소 토크 최소화 알고리즘과 국소 충돌 최소화 알고리즘에 퍼지 로직과 유전자 알고리즘을 적용시킨 것이다. 제안된 알고리즘은 3자유도 평면 여자유도 매니퓰레이터에 적용하였으며, 시뮬레이션 결과를 통하여 제안된 알고리즘의 타당성을 확인하였다.

Design of a Bridge Transported ServoManipulator System for a Radioactive Environment

  • Park, B.S.;Jin, J.H.;Ahn, S.H.;Song, T.G.;Kim, D.G.;Yoon, J.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2514-2518
    • /
    • 2003
  • The KAERI Spent Fuel Remote Technology Development (SFRTD) Department is developing the remote maintenance and repair equipment, which is used in a hot cell in an intense radiation field, as part of a project to develop the Advanced spent fuel Conditioning Process (ACP). Although several mechanical master-slave manipulators (MSMs) is mounted on the hot cell wall, their reach will be limited and cannot access areas for all the ACP equipment maintenance. A Bridge Transported ServoManipulator (BTSM) has been designed to overcome the limitation of access areas that is a drawback of MSMs for the ACP equipment maintenance. The BTSM system consists of four components: a transporter with telescoping tubeset, a slave manipulator, a master manipulator, and a remote control system. The BTSM system has been designed by Solid Edge that is a 3D computer-aided design (CAD) software, except for the remote control system. The master manipulator and the slave manipulator are kinematically similar in design, except for the handle and the tong, respectively. The manipulators have 6 degrees of freedom (DOF) plus the jaws motion. The transporter has traveling, traverse, and hoisting motion to position the slave manipulator.

  • PDF

Trajectory Tracking Performance Analysis of Underwater Manipulator for Autonomous Manipulation

  • Chae, Junbo;Yeu, Taekyeong;Lee, Yeongjun;Lee, Yoongeon;Yoon, Suk-Min
    • 한국해양공학회지
    • /
    • 제34권3호
    • /
    • pp.180-193
    • /
    • 2020
  • In this study, the end-effector tracking performance of a manipulator installed on a remotely operated vehicle (ROV) for autonomous underwater intervention is verified. The underwater manipulator is an ARM 7E MINI model produced by the ECA group, which consists of six joints and one gripper. Of the six joints of the manipulator, two are revolute joints and the other four are prismatic joints. Velocity control is used to control the manipulator with forward and inverse kinematics. When the manipulator approaches a target object, it is difficult for the ROV to maintain its position and posture, owing to various disturbances, such as the variation in both the center of mass and the reaction force resulting from the manipulator motion. Therefore, it is necessary to compensate for the influences and ensure the relative distance to the object. Simulations and experiments are performed to track the trajectory of a virtual object, and the tracking performance is verified from the results.

5절 링크구조를 갖는 2자유도 매니퓰레이터의 작업지향설계 (Task Based Design of a Two-DOF Manipulator with Five-Bar Link Mechanism)

  • 김진영;조형석
    • 제어로봇시스템학회논문지
    • /
    • 제6권1호
    • /
    • pp.66-72
    • /
    • 2000
  • As the demand for the design of modular manipulators or special purpose manipulators has increased, task based design to design an optimal manipulator for a given task become more and more important. However, the complexity with a large number of design parameters, and highly nonlinear and implicit functions are characteristics of a general manipulator design. To achieve the goal of task based design, it is necessary to develop a methodology to solve the complexity. This paper addresses how to determine the kinematic parameters of a two-degrees of freedom manipulator with parallelogram five-bar link mechanism from a given task, namely, how to map a given task into the kinematic parameters. With simplified example of designing a manipulator with five-bar link mechanism, the methodology for task based design is presented. And it introduces formulations of a given task and manipulator specifications, and presents a new dexterity measure for manipulator design. Also the optimization problem with constraints is solved by using a genetic algorithm that provides robust search in complex spaces.

  • PDF

7자유도 인간형 로봇 팔의 직관적인 팔꿈치 위치 설정이 가능한 역기구학 알고리즘 (Analytical Inverse Kinematics Algorithm for a 7 DOF Anthropomorphic Robot Arm Using Intuitive Elbow Direction)

  • 김영렬;송재복
    • 로봇학회논문지
    • /
    • 제6권1호
    • /
    • pp.27-33
    • /
    • 2011
  • Control and trajectory generation of a 7 DOF anthropomorphic robot arm suffer from computational complexity and singularity problem because of numerical inverse kinematics. To deal with such problems, analytical methods for a redundant robot arm have been researched to enhance the performance of inverse kinematics. In this research, we propose an analytical inverse kinematics algorithm for a 7 DOF anthropomorphic robot arm. Using this algorithm, it is possible to generate a trajectory passing through the singular points and intuitively move the elbow without regard to the end-effector pose. Performance of the proposed algorithm was verified by various simulations. It is shown that the trajectory planning using this algorithm provides correct results near the singular points and can utilize redundancy intuitively.

인체진동 실험용 6 자유도 가진기 개발에 관한 연구 (A Study on the Development of 6DOF Vibration Simulator for Human Vibration Experiment)

  • 우춘규;김수현;곽윤근;정완섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.144-150
    • /
    • 2000
  • In this paper, we introduce a modified six-degrees-of-freedom parallel-link manipulator, which will be applied to the human vibration experiments. We analyze the inverse kinematics and workspace of this manipulator and comprehend the characteristics of kinematics analyzed. Additionally, solutions of forward kinematics are obtained through the iterative Newton-Raphson method known as one of the most used numerical analysis. Finally, dynamic equation of the manipulator is derived in closed form through the Newton-Euler approach, which will be used for the development of control software.

  • PDF

Laser pose calibration of ViSP for precise 6-DOF structural displacement monitoring

  • Shin, Jae-Uk;Jeon, Haemin;Choi, Suyoung;Kim, Youngjae;Myung, Hyun
    • Smart Structures and Systems
    • /
    • 제18권4호
    • /
    • pp.801-818
    • /
    • 2016
  • To estimate structural displacement, a visually servoed paired structured light system (ViSP) was proposed in previous studies. The ViSP is composed of two sides facing each other, each with one or two laser pointers, a 2-DOF manipulator, a camera, and a screen. By calculating the positions of the laser beams projected onto the screens and rotation angles of the manipulators, relative 6-DOF displacement between two sides can be estimated. Although the performance of the system has been verified through various simulations and experimental tests, it has a limitation that the accuracy of the displacement measurement depends on the alignment of the laser pointers. In deriving the kinematic equation of the ViSP, the laser pointers were assumed to be installed perfectly normal to the same side screen. In reality, however, this is very difficult to achieve due to installation errors. In other words, the pose of laser pointers should be calibrated carefully before measuring the displacement. To calibrate the initial pose of the laser pointers, a specially designed jig device is made and employed. Experimental tests have been performed to validate the performance of the proposed calibration method and the results show that the estimated displacement with the initial pose calibration increases the accuracy of the 6-DOF displacement estimation.

공리적 설계를 이용한 공간형 3자유도 기구의 최적설계 (The Optimum Design of a Spatial 3-DOF Manipulator Using Axiomatic Design)

  • 한석영;이병주;김선정;김종오;정구봉
    • 한국공작기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.52-60
    • /
    • 2005
  • Ultra-precision positioning systems basically require high natural frequency and sufficient workspace. To cope with this requirement, flexure hinge mechanisms have been developed. However, previous designs are difficult to satisfy the functional requirements of the system due to difficulty in modeling and optimization process applying fur the independent axiomatic design. Therefore, this paper suggests a new design and design procedure based on semi-coupled, axiomatic design. A spatial 3-DOF parallel type micro mechanism is chosen aa an exemplary device. Based on preliminary kinematic analysis and dynamic modeling of the system, an optimum design is conducted. To check the effectiveness of the optimal parameters obtained by theoretical approach, simulation has been performed by FEM.