• 제목/요약/키워드: 6족 로봇

검색결과 47건 처리시간 0.037초

2족 보행로봇을 위한 여유자유도 궤적 생성 (Redundancy Trajectory Generation for Biped Robot Manipulators)

  • 연제성;박종현
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1014-1022
    • /
    • 2009
  • A biped robot in locomotion can be regarded to be kinetically redundant in that the link-chain from its foot on the ground to its swing foot has more degrees of freedom that needed to realize stable bipedal locomotion. This paper proposes a new method to generate a trajectory for bipedal locomotion based on this redundancy, which directly generates a locomotion trajectory at the joint level unlike some other methods such as LIPM (linear inverted-pendulum mode) and GCIPM (gravity-compensated inverted-pendulum mode), each of which generates a trajectory of the center of gravity or the hip link under the assumption of the dominance of the hip-link inertia before generating the trajectory of the whole links at the joint level. For the stability of the trajectory generated in the proposed method, a stability condition based on the ZMP (zero-moment point) is used as a constraint as well as other kinetic constraints for bipedal motions. A 6-DOF biped robot is used to show how a stable locomotion trajectory can be generated in the sagittal plane by the proposed method and to demonstrate the feasibility of the proposed method.

빠른 보행이 가능한 6족 로봇 (A Hexapod Robot that can Walk Fast)

  • 서현세;성영휘
    • 전기학회논문지
    • /
    • 제62권4호
    • /
    • pp.536-543
    • /
    • 2013
  • In this paper, we propose a new type of hexapod robot that can walk fast. Most of the conventional hexapod robots are either rectangular type of hexagonal type. Those robots have drawbacks in the speed and stability of walking. The proposed robot has six legs, one fore leg, one hind leg, two left legs and two right legs. The proposed robot forms relatively wide supporting polygons along the walking direction, so it can walk very fast stably. We implemented the proposed hexapod robot and showed the feasibility of the robot by 3+3 walking experiment and 2+4 walking experiment.

스테레오 영상처리를 이용한 바퀴달린 6족 로봇의 형태변형 알고리즘 구현 (Implementation of Transformation Algorithm for a Leg-wheel Hexapod Robot Using Stereo Vision)

  • 이상훈;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.202-204
    • /
    • 2006
  • In this paper, the detection scheme of the spatial coordinates based on stereo camera for a Transformation algorithm of an Leg-wheel Hexapod Robot is proposed. Robot designed as can have advantages that do transfer possibility fast mobility in flat topography and uneven topography through walk that use wheel drive. In the proposed system, using the disparity data obtained from the left and right images captured by the stereo camera system and the perspective transformation between a 3-D scene and an image plane, depth information can be detected. Robot uses construed environmental data and transformation algorithm, decide wheel drive and leg waik, and can calculate width of street and regulate width of robot.

  • PDF

보행 재활 로봇을 위한 2자유도 족관절 기구 개발 (Development of a 2-DOF Ankle Mechanism for Gait Rehabilitation Robots)

  • 허근섭;강오현;이상룡;이춘영
    • 제어로봇시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.503-509
    • /
    • 2015
  • In this paper, we designed and tested an ankle joint mechanism for a gait rehabilitation robot. Gait rehabilitation programs are designed to improve the natural leg motion of patients who have lost their walking capabilities by accident or disease. Strengthening the muscles of the lower-limbs and stimulation of the nervous system corresponding to walking helps patients to walk again using gait assistive devices. It is an obvious requirement that the rehabilitation system's motion should be similar to and as natural as the normal gait. However, the system being used for gait rehabilitation does not pay much attention to ankle joints, which play an important role in correct walking as the motion of the ankle should reflect the movement of the center of gravity (COG) of the body. Consequently, we have designed an ankle mechanism that ensures the safety of the patient as well as efficient gait training. Also, even patients with low leg muscle strength are able to operate the ankle joint due to the direct-drive mechanism without a reducer. This safety feature prevents any possible adverse load on the human ankle. The additional degree of freedom for the roll motion achieves a gait pattern which is similar to the normal gait and with a greater degree of comfort.

다양한 험지 정찰을 위한 6족 보행 로봇 개발 (Development of a Hexapod Robot for Multi-terrain Reconnaissance)

  • 임승용;김종형;김형직
    • 한국생산제조학회지
    • /
    • 제24권6호
    • /
    • pp.667-674
    • /
    • 2015
  • This paper describes the development of a prototype hexapod robot with six circular legs to overcome a variety of challenging terrains. The legs of the robot are very important for stability during walking, which are analyzed for determining the optimal design parameters through CAE tools. Its control system consists of three types of sensors, microprocessors, and communication modules for PC interface. The entire operation of the robot can be controlled and monitored using a PC. The experimental operations for three different roads verified the feasibility of the prototype robot for carrying out reconnaissance on multi terrain. In the near future, the prototype robot can be used for a military purpose of detecting and informing a potential risk in advance.

6족 보행로봇에 관한 기초연구 (A Basic Study of Hexapod Walking Robot)

  • 강동현;민영봉;반전훈구;매전간웅
    • Journal of Biosystems Engineering
    • /
    • 제32권5호
    • /
    • pp.339-347
    • /
    • 2007
  • A hexapod walking robot had been developed for gathering information in the field. The developed robot was $260{\times}260{\times}130$ ($W{\times}L{\times}H$, mm) in size and 14.7 N in weight. The legs had nineteen degrees of freedom. A leg has three rotational joints actuated by small servomotors. Two servomotors placed at ankle and knee played the roles of vertical joint for up and down motions of the leg and the other one placed at coxa played the role of horizontal joint for forward and backward motions. In addition, a servomotor placed at thorax between the front legs and the middle legs played the role of vertical joint for pumping the two front legs to climb stair or inclination. Walking motion of the robot was executed by tripod gait. The robot was controlled by manual remote-controller communicated by an infrared ray. Two controllers were equipped to control the walking of the robot. The sub-controller using PIC microcomputer (Microchips, PIC16F84A) received the 16 bit command signal from the manual remote controller, decoded it to 8bit and transmitted it to the main microcomputer (RENESAS, SH2/7045), which controlled the 19 servomotors using the PWM command signals. Walking speeds were controlled by adjusting the period of command cycle and the stride. Forward walking speed were within 100 cm/min to 300 cm/min. However, experimental walking speed had the error of 4-40 cm/min to compare with the theoretical one, because of slippage of the leg and the circular arc motion of servomotor of coxa.

PID 알고리즘을 이용한 역 진자 시스템의 자세 제어에 관한 연구 (A Study on Pose Control for Inverted Pendulum System using PID Algorithm)

  • 강진구
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권6호
    • /
    • pp.400-405
    • /
    • 2023
  • 현재 도립진자는 많은 분야에서 연구 중이며 미사일, 로켓, 등의 자세 제어와 2족 보행 로봇 등에 응용되고 있다. 본 연구에서는 256펄스의 로터리 엔코더와 DC 모터를 이용한 회전형 도립진자(Rotary Inverted Pendulum)를 구성하여 회전형 역 진자의 수직 자세 제어를 연구하였다. 비선형 시스템의 경우 복잡한 알고리즘과 제어기가 필요하지만 고전적이며 비교적 간단한 PID(Proportional Integral Derivation)알고리즘을 이용한 제어 방법을 회전형 도립진자 시스템에 적용하였으며 간단하지만 원하는 성능을 높이는 방안을 연구하였다. 본 연구에서 사용된 회전형 도립진자 시스템은 비선형적이고 불안정한 시스템으로 선형화된 모델링에서 마이크로칩 사의 dsPIC30F4013 임베디드 프로세서를 이용한 PID 제어기를 설계 및 구현하였다. 보통 PID 제어기는 하나 혹은 두 가지 이상을 조합하여 설계하며 우수한 제어 성능에 비해 구조가 간단하며 제어 이득 조정이 다른 제어기들에 비해 비교적 쉽다는 장점이 있다. 본 연구에서는 시스템의 물리적 구조를 수학적 방법으로 분석하고 모델링을 통한 회전형 도립진자의 수직 균형을 위한 제어를 실현하였다. 또한 회전형 역 진자를 이용하여 PID 제어기로 제어가 가능한지 시뮬레이션과 실험을 통하여 그 타당성을 검증하였다.