• Title/Summary/Keyword: 5xFAD model

Search Result 3, Processing Time 0.016 seconds

Comparison of Cerebral Cortex Transcriptome Profiles in Ischemic Stroke and Alzheimer's Disease Models

  • Juhyun Song
    • Clinical Nutrition Research
    • /
    • v.11 no.3
    • /
    • pp.159-170
    • /
    • 2022
  • Ischemic stroke and Alzheimer's disease (AD) are representative geriatric diseases with a rapidly increasing prevalence worldwide. Recent studies have reported an association between ischemic stroke neuropathology and AD neuropathology. Ischemic stroke shares some similar characteristics with AD, such as glia activation-induced neuroinflammation, amyloid beta accumulation, and neuronal cell loss, as well as some common risk factors with AD progression. Although there are considerable similarities in neuropathology between ischemic stroke and AD, no studies have ever compared specific genetic changes of brain cortex between ischemic stroke and AD. Therefore, in this study, I compared the cerebral cortex transcriptome profile of 5xFAD mice, an AD mouse model, with those of middle cerebral artery occlusion (MCAO) mice, an ischemic stroke mouse model. The data showed that the expression of many genes with important functional implications in MCAO mouse brain cortex were related to synaptic dysfunction and neuronal cell death in 5xFAD mouse model. In addition, changes in various protein-coding RNAs involved in synaptic plasticity, amyloid beta accumulation, neurogenesis, neuronal differentiation, glial activation, inflammation and neurite outgrowth were observed. The findings could serve as an important basis for further studies to elucidate the pathophysiology of AD in patients with ischemic stroke.

Hesperidin Improves Memory Function by Enhancing Neurogenesis in a Mouse Model of Alzheimer's Disease

  • Danbi Lee;Namkwon Kim;Seung Ho Jeon;Min Sung Gee;Yeon-Joo Ju;Min-Ji Jung;Jae Seok Cho;Yeongae Lee;Sangmin Lee;Jong Kil Lee
    • Journal of Web Engineering
    • /
    • v.14 no.15
    • /
    • pp.3125-3135
    • /
    • 2022
  • Alzheimer's disease (AD) is an irreversible neurodegenerative disease characterized by memory and cognitive impairments. Neurogenesis, which is related to memory and cognitive function, is reduced in the brains of patients with AD. Therefore, enhancing neurogenesis is a potential therapeutic strategy for neurodegenerative diseases, including AD. Hesperidin (HSP), a bioflavonoid found primarily in citrus plants, has anti-inflammatory, antioxidant, and neuroprotective effects. The objective of this study was to determine the effects of HSP on neurogenesis in neural stem cells (NSCs) isolated from the brain of mouse embryos and five familial AD (5xFAD) mice. In NSCs, HSP significantly increased the proliferation of NSCs by activating adenosine monophosphate (AMP)-activated protein kinase (AMPK)/cAMP-response element-binding protein (CREB) signaling, but did not affect NSC differentiation into neurons and astrocytes. HSP administration restored neurogenesis in the hippocampus of 5xFAD mice via AMPK/brain-derived neurotrophic factor/tropomyosin receptor kinase B/CREB signaling, thereby decreasing amyloid-beta accumulation and ameliorating memory dysfunction. Collectively, these preclinical findings suggest that HSP is a promising candidate for the prevention and treatment of AD.

Ex Vivo Raman Spectroscopy Measurement of a Mouse Model of Alzheimer's Disease (라만 기반 치매 모델의 뇌조직 분광 특성 측정)

  • Ko, Kwanhwi;Seo, Younghee;Im, Seongmin;Lee, Hongki;Park, Ji Young;Chang, Won Seok;Kim, Donghyun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.331-337
    • /
    • 2022
  • Raman spectroscopy is an optical technique that can identify molecules in a label-free manner, and is therefore heavily investigated in various areas ranging from biomedical engineering to materials science. Probe-based Raman spectroscopy can perform minimally invasive chemical analysis, and thus has potential as a real-time diagnostic tool during surgery. In this study, Raman experimentation was calibrated by examining the Raman shifts with respect to the concentrations of chemical substances. Raman signal characteristics, targeted for normal mice and cerebral tissues of the 5xFAD dementia mutant model with accumulated amyloid beta plaques, were measured and analyzed to explore the possibility of diagnosis of Alzheimer's disease. The application to the diagnosis of dementia was cross-validated by measuring Raman signals of amyloid beta. The results suggest the potential of Raman spectroscopy as a diagnostic tool that may be useful in various areas of application.