• Title/Summary/Keyword: 5G network

Search Result 704, Processing Time 0.027 seconds

Hierarchical Dynamic Spectrum Management for Providing Network-wise Fairness in 5G Cloud RAN (5G Cloud RAN에서 네트워크 공평성 향상을 위한 계층적 적응 스펙트럼 관리 방법)

  • Jo, Ohyun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.7
    • /
    • pp.1-6
    • /
    • 2020
  • A new resource management algorithm is proposed for 5G networks which have a coordinated network architecture. By sharing the contol information among multiple neighbor cells and managing in centralized structure, the propsed algorithm fully utilizes the benefits of network coordination to increase fairness and throughput at the same time. This optimization of network performance is achieved while operating within a tolerable amount of signaling overhead and computational complexity. Simulation results confirm that the proposed scheme improve the network capacity up to 40% for cell edge users and provide network-wise fairness as much as 23% in terms of the well-knwon Jain's Fainess Index.

An Enhanced Control Protocol Design for LADN in 5G Wireless Networks

  • Kim, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.109-117
    • /
    • 2020
  • In this paper, we analyze LADN(Local Area Data Network) that provides high throughput, low latency and service localization for 5G wireless networks and propose an enhanced control protocol design for LADN in 5G wireless networks. The concept of LADN is newly introduced in 3GPP 5G communication system and the LADN is a data network to which the UE(User Equipment) can connect with a specific LADN session only when the UE is located in a certain service area. If the LADN information between the UE and core network is not identical, the LADN session cannot be properly established. The proposed approach promplty synchronizes the LADN information between the UE and core network by using the specific registration procedure and appropriately establishes the LADN session, when the establishment of the LADN session is failed. Consequently, the proposed enhanced control protocol design(ECP) can prevent unnecessary signalling overhead and communication delay for LADN in 5G wireless networks.

5G Network Resource Allocation and Traffic Prediction based on DDPG and Federated Learning (DDPG 및 연합학습 기반 5G 네트워크 자원 할당과 트래픽 예측)

  • Seok-Woo Park;Oh-Sung Lee;In-Ho Ra
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.33-48
    • /
    • 2024
  • With the advent of 5G, characterized by Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communications (URLLC), and Massive Machine Type Communications (mMTC), efficient network management and service provision are becoming increasingly critical. This paper proposes a novel approach to address key challenges of 5G networks, namely ultra-high speed, ultra-low latency, and ultra-reliability, while dynamically optimizing network slicing and resource allocation using machine learning (ML) and deep learning (DL) techniques. The proposed methodology utilizes prediction models for network traffic and resource allocation, and employs Federated Learning (FL) techniques to simultaneously optimize network bandwidth, latency, and enhance privacy and security. Specifically, this paper extensively covers the implementation methods of various algorithms and models such as Random Forest and LSTM, thereby presenting methodologies for the automation and intelligence of 5G network operations. Finally, the performance enhancement effects achievable by applying ML and DL to 5G networks are validated through performance evaluation and analysis, and solutions for network slicing and resource management optimization are proposed for various industrial applications.

Analysis and study of Deep Reinforcement Learning based Resource Allocation for Renewable Powered 5G Ultra-Dense Networks

  • Hamza Ali Alshawabkeh
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.226-234
    • /
    • 2024
  • The frequent handover problem and playing ping-pong effects in 5G (5th Generation) ultra-dense networking cannot be effectively resolved by the conventional handover decision methods, which rely on the handover thresholds and measurement reports. For instance, millimetre-wave LANs, broadband remote association techniques, and 5G/6G organizations are instances of group of people yet to come frameworks that request greater security, lower idleness, and dependable principles and correspondence limit. One of the critical parts of 5G and 6G innovation is believed to be successful blockage the board. With further developed help quality, it empowers administrator to run many systems administration recreations on a solitary association. To guarantee load adjusting, forestall network cut disappointment, and give substitute cuts in case of blockage or cut frustration, a modern pursuing choices framework to deal with showing up network information is require. Our goal is to balance the strain on BSs while optimizing the value of the information that is transferred from satellites to BSs. Nevertheless, due to their irregular flight characteristic, some satellites frequently cannot establish a connection with Base Stations (BSs), which further complicates the joint satellite-BS connection and channel allocation. SF redistribution techniques based on Deep Reinforcement Learning (DRL) have been devised, taking into account the randomness of the data received by the terminal. In order to predict the best capacity improvements in the wireless instruments of 5G and 6G IoT networks, a hybrid algorithm for deep learning is being used in this study. To control the level of congestion within a 5G/6G network, the suggested approach is put into effect to a training set. With 0.933 accuracy and 0.067 miss rate, the suggested method produced encouraging results.

An Analysis of Security Vulnerabilities Using 5G NAS COUNT (5G NAS COUNT 취약점을 이용한 보안 위협 분석)

  • Kim, Min-Jae;Park, Jong-Geun;Shin, Ji-Soo;Moon, Dae-Sung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.3
    • /
    • pp.565-573
    • /
    • 2022
  • Current mobile communication system is in the mid-process of conversion from 4G LTE to 5G network. According to the generalization of mobile communication services, personal information such as user's identifiers and location information is transmitted through a mobile communication network. The importance of security technology is growing according to the characteristics of wireless mobile communication networks, the use of wireless shared channels is inevitable, and security technology cannot be applied to all network system elements in order to satisfy the bandwidth and speed requirements. In particular, for security threat analysis, researches are being conducted on various attack types and vulnerability analysis through rogue base stations or attacker UE to make user services impossible in the case of 5G networks. In this paper, we established a 5G network testbed using open sources. And we analyzed three security vulnerabilities related to NAS COUNT and confirmed the validity of two vulnerabilities based on the testbed or analyzing the 3GPP standard.

5G MEC (Multi-access Edge Computing): Standardization and Open Issues (5G Multi-access Edge Computing 표준기술 동향)

  • Lee, S.I.;Yi, J.H.;Ahn, B.J.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.4
    • /
    • pp.46-59
    • /
    • 2022
  • The 5G MEC (Multi-access Edge Computing) technology offers network and computing functionalities that allow application services to improve in terms of network delay, bandwidth, and security, by locating the application servers closer to the users at the edge nodes within the 5G network. To offer its interoperability within various networks and user equipment, standardization of the 5G MEC technology has been advanced in ETSI, 3GPP, and ITU-T, primarily for the MEC platform, transport support, and MEC federation. This article offers a brief review of the standardization activities for 5G MEC technology and the details about the system architecture and functionalities developed accordingly.

Analysis of Current 5G Open-Source Projects (공개 소프트웨어 기반 5G 프로젝트 개발 동향 분석)

  • Kim, M.J.;Park, K.M.;Park, J.G.;Kim, Y.S.;Lee, J.H.;Moon, D.S.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.2
    • /
    • pp.83-92
    • /
    • 2021
  • 5G networks are rapidly expanding. Simultaneously, the need for a testbed-not a commercial network-is increasing to verify aspects such as 5G network security vulnerabilities. Open-source projects in 4G networks already exist and are implemented similarly in commercial networks. Due to the compatibilty between 5G and 4G networks, 5G networks are being developed and implemented as open-source projects on the basis of 4G networks. In this study, we review the development trends of 5G open-source projects and simulators that can be used for 5G research.

Research on the Implementation of 5G SA Test Network Test Bed Function Based on Service-Based Architecture (SBA 기반 5G SA 시험망 시스템 기능 구현에 관한 연구)

  • Park, Jea-Seok;Yoon, Mahn-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.529-531
    • /
    • 2022
  • The 5th generation mobile communication (5G) is being commercialized by major domestic and foreign mobile telecommunication businesses and is spreading to general customers mainly on smart devices such as smartphones, wearables, and IoT. If 4G networks and 5G access equipment were utilized by introducing NSA(None-Stand Alone) technology when 5G was first introduced, recently, 5G convergence services are being realized by gradually expanding evolution to 5G standalone networks through SA (Stand Alone) technology. The purpose of this study is to study a design plan for implementing necessary service-oriented functions from the perspective of communication network users on the configuration of 5G SA equipment based on SBA(Service-based Architecture) mentioned in the 3GPP technical specification document. Through this research, it is expected that companies that need to enter the 5G market can easily access the 5G SA network to develop and supplement specialized 5G convergence services to improve product performance and quality.

  • PDF

Trends in Mobile Network Energy-Saving Technology (모바일 네트워크 에너지 절감 기술 동향)

  • S. Jung;S.-E. Hong;J. Na
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.2
    • /
    • pp.26-35
    • /
    • 2023
  • Energy efficiency is an important factor toward sustainable future mobile network systems. As the size of the 5G mobile network system increases, the consumption and costs of energy increase. Accordingly, energy-saving optimization has become a major process in network systems, and various related technologies for energy saving are being developed. We provide a brief review of the technical trends in energy saving in 3GPP 5G & 5G Advanced systems and O-RAN systems. We focus on power models and energy-saving technologies in various resource domains of 3GPP 5G & 5G Advanced systems and energy-saving use cases of O-RAN systems.

Mobile Small Cells for Further Enhanced 5G Heterogeneous Networks

  • Lee, Choong-Hee;Lee, Sung-Hyung;Go, Kwang-Chun;Oh, Sung-Min;Shin, Jae Sheung;Kim, Jae-Hyun
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.856-866
    • /
    • 2015
  • A heterogeneous network (HetNet) is a network topology composed by deploying multiple HetNets under the coverage of macro cells (MCs). It can improve network throughput, extend cell coverage, and offload network traffic; for example, the network traffic of a 5G mobile communications network. A HetNet involves a mix of radio technologies and various cell types working together seamlessly. In a HetNet, coordination between MCs and small cells (SCs) has a positive impact on the performance of the networks contained within, and consequently on the overall user experience. Therefore, to improve user-perceived service quality, HetNets require high-efficiency network protocols and enhanced radio technologies. In this paper, we introduce a 5G HetNet comprised of MCs and both fixed and mobile SCs (mSCs). The featured mSCs can be mounted on a car, bus, or train and have different characteristics to fixed SCs (fSCs). In this paper, we address the technical challenges related to mSCs. In addition, we analyze the network performance under two HetNet scenarios-MCs and fSCs, and MCs and mSCs.