• Title/Summary/Keyword: 5G 코어 네트워크

Search Result 24, Processing Time 0.023 seconds

A Study on Service Quality Diagnosis Techniques for LTE/5G Network Backhaul (LTE/5G 네트워크 백홀(Backhaul)의 서비스 품질진단 기법에 관한 연구)

  • Ji-Hyun Yoo
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.617-623
    • /
    • 2023
  • With the evolution of communication networks, there is a growing demand for stable high-speed data connections to support services relying on large-capacity data. The increasing volume of packet data aggregated from user devices underscores the significance of quality diagnostics for the backhaul network, an intermediate link transmitting data to the core network. This paper conducts empirical research on techniques to diagnose issues within the backhaul network through practical case studies, through diagnosing various factors such as circuit bandwidth, speed disparities within switches, network segment-specific buffer sizes, routing policies, among other factors that could potentially cause RTT (Round Trip Time) delays and performance degradation.

A Research about Open Source Distributed Computing System for Realtime CFD Modeling (SU2 with OpenCL and MPI) (실시간 CFD 모델링을 위한 오픈소스 분산 컴퓨팅 기술 연구)

  • Lee, Jun-Yeob;Oh, Jong-woo;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.171-171
    • /
    • 2017
  • 전산유체역학(CFD: Computational Fluid Dynamics)를 이용한 스마트팜 환경 내부의 정밀 제어 연구가 진행 중이다. 시계열 데이터의 난해한 동적 해석을 극복하기위해, 비선형 모델링 기법의 일종인 인공신경망을 이용하는 방안을 고려하였다. 선행 연구를 통하여 환경 데이터의 비선형 모델링을 위한 Tensorflow활용 방법이 하드웨어 가속 기능을 바탕으로 월등한 성능을 보임을 확인하였다. 그럼에도 오프라인 일괄(Offline batch)처리 방식의 한계가 있는 인공신경망 모델링 기법과 현장 보급이 불가능한 고성능 하드웨어 연산 장치에 대한 대안 마련이 필요하다고 판단되었다. CFD 해석을 위한 Solver로 SU2(http://su2.stanford.edu)를 이용하였다. 운영 체제 및 컴파일러는 1) Mac OS X Sierra 10.12.2 Apple LLVM version 8.0.0 (clang-800.0.38), 2) Windows 10 x64: Intel C++ Compiler version 16.0, update 2, 3) Linux (Ubuntu 16.04 x64): g++ 5.4.0, 4) Clustered Linux (Ubuntu 16.04 x32): MPICC 3.3.a2를 선정하였다. 4번째 개발환경인 병렬 시스템의 경우 하드웨어 가속는 OpenCL(https://www.khronos.org/opencl/) 엔진을 이용하고 저전력 ARM 프로세서의 일종인 옥타코어 Samsung Exynos5422 칩을 장착한 ODROID-XU4(Hardkernel, AnYang, Korea) SBC(Single Board Computer)를 32식 병렬 구성하였다. 분산 컴퓨팅을 위한 환경은 Gbit 로컬 네트워크 기반 NFS(Network File System)과 MPICH(http://www.mpich.org/)로 구성하였다. 공간 분해능을 계측 주기보다 작게 분할할 경우 발생하는 미지의 바운더리 정보를 정의하기 위하여 3차원 Kriging Spatial Interpolation Method를 실험적으로 적용하였다. 한편 병렬 시스템 구성이 불가능한 1,2,3번 환경의 경우 내부적으로 이미 존재하는 멀티코어를 활용하고자 OpenMP(http://www.openmp.org/) 라이브러리를 활용하였다. 64비트 병렬 8코어로 동작하는 1,2,3번 운영환경의 경우 32비트 병렬 128코어로 동작하는 환경에 비하여 근소하게 2배 내외로 연산 속도가 빨랐다. 실시간 CFD 수행을 위한 분산 컴퓨팅 기술이 프로세서의 속도 및 운영체제의 정보 분배 능력에 따라 결정된다고 판단할 수 있었다. 이를 검증하기 위하여 4번 개발환경에서 운영체제를 64비트로 개선하여 5번째 환경을 구성하여 검증하였다. 상반되는 결과로 64비트 72코어로 동작하는 분산 컴퓨팅 환경에서 단일 프로세서 기반 멀티 코어(1,2,3번) 환경보다 보다 2.5배 내외 연산속도 향상이 있었다. ARM 프로세서용 64비트 운영체제의 완성도가 낮은 시점에서 추후 성공적인 실시간 CFD 모델링을 위한 지속적인 검토가 필요하다.

  • PDF

IBN-based: AI-driven Multi-Domain e2e Network Orchestration Approach (IBN 기반: AI 기반 멀티 도메인 네트워크 슬라이싱 접근법)

  • Khan, Talha Ahmed;Muhammad, Afaq;Abbas, Khizar;Song, Wang-Cheol
    • KNOM Review
    • /
    • v.23 no.2
    • /
    • pp.29-41
    • /
    • 2020
  • Networks are growing faster than ever before causing a multi-domain complexity. The diversity, variety and dynamic nature of network traffic and services require enhanced orchestration and management approaches. While many standard orchestrators and network operators are resulting in an increase of complexity for handling E2E slice orchestration. Besides, there are multiple domains involved in E2E slice orchestration including access, edge, transport and core network each having their specific challenges. Hence, handling of multi-domain, multi-platform and multi-operator based networking environments manually requires specified experts and using this approach it is impossible to handle the dynamic changes in the network at runtime. Also, the manual approaches towards handling such complexity is always error-prone and tedious. Hence, this work proposes an automated and abstracted solution for handling E2E slice orchestration using an intent-based approach. It abstracts the domains from the operators and enable them to provide their orchestration intention in the form of high-level intents. Besides, it actively monitors the orchestrated resources and based on current monitoring stats using the machine learning it predicts future utilization of resources for updating the system states. Resulting in a closed-loop automated E2E network orchestration and management system.

Efficient Operation and Management Scheme of Micro Data Centers for Realization of Edge Computing (에지 컴퓨팅의 실현을 위한 마이크로 데이터센터의 효율적인 운영 및 관리 기법)

  • Choi, JungYul
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.11
    • /
    • pp.30-39
    • /
    • 2020
  • As 5G mobile communication services are provided, efforts are being made to provide various services to users with ultra-low latency. This raises interest in edge computing, which can provide high performance computing services near users instead of cloud computing at the network core. This paper presents an efficient operation and management scheme of a micro data center, which is an essential equipment for realizing edge computing. First, we present the functional structure and deployment plan of edge computing. Next, we present the requirements for the micro data centers for edge computing and the operation and management scheme accordingly. Finally, in order to efficiently manage resources in the micro data centers, we present resource management items to be collected and monitored, and propose a performance indicator to measure the energy efficiency.