• Title/Summary/Keyword: 5G 이동통신

Search Result 318, Processing Time 0.029 seconds

Cell ID Detection Schemes Using PSS/SSS for 5G NR System (5G NR 시스템에서 PSS/SSS를 이용한 Cell ID 검출 방법)

  • Ahn, Haesung;Kim, Hyeongseok;Cha, Eunyoung;Kim, Jeongchang
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.870-881
    • /
    • 2020
  • This paper presents cell ID (cell identity) detection schemes using PSS/SSS (primary synchronization signal/secondary synchronization signal) for 5G NR (new radio) system and evaluates the detection performance. In this paper, we consider two cell ID detection schemes, i.e. two-stage detection and joint detection schemes. The two-stage detection scheme consists of two stages which estimate a channel gain between a transmitter and receiver and detect the PSS and SSS sequences. The joint detection scheme jointly detects the PSS and SSS sequences. In addition, this paper presents coherent and non-coherent combining schemes. The coherent scheme calculates the correlation value for the total length of the given PSS and SSS sequences, and the non-coherent combining scheme calculates the correlation within each group by dividing the total length of the sequence into several groups and then combines them non-coherently. For the detection schemes considered in this paper, the detection error rates of PSS, SSS and overall cell ID are evaluated and compared through computer simulations. The simulation results show that the joint detection scheme outperforms the two-stage detection scheme for both coherent and non-coherent combining schemes, but the two-stage detection scheme can greatly reduce the computational complexity compared to the joint detection scheme. In addition, the non-coherent combining detection scheme shows better performance under the additive white Gaussian noise (AWGN), fixed, and mobile environments.

Nonlinear Effect on the BER and Spectrum Shape of OFDM, UFMC and FBMC for 5G Mobile Communication (5세대 이동통신을 위한 OFDM, UFMC, FBMC 시스템의 BER과 스펙트럼의 비선형 특성 평가)

  • Lee, Dong-Hyung;An, Changyoung;Kung, Kyung-Lok;Kim, Byeongjae;Ryu, Heung-Gyoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.3-14
    • /
    • 2016
  • Recently, researches for new waveforms have been carried in order to satisfy KPI for 5G mobile communication system. UFMC and FBMC are well known as ways to reduce OOB power. In this paper, we analyze spectrum of OFDM, UFMC, and FBMC system under nonlinear HPA environment. And then we evaluate and analyze performance of these systems under the same environment. As simulation results, OOB power of OFDM, UFMC, and FBMC increases with HPA nonlinearity increasement. Especially, OOB power of FBMC is the largest increase due to HPA nonlinearity. Also, BER performance of these systems is degraded by increasement of HPA nonlinearity. Therefore, In this paper, we can confirm that a system with low-complexity and high-speed processing is advantageous, because BER performance and OOB power characteristic of these systems are degraded to similar level, when these systems are implemented in real world.

Resource Allocation to Support QoE in Hierarchical Macrocell-Femtocell Networks (계층화된 매크로-펨토셀 망에서 QoE를 지원하기 위한 자원할당 방법)

  • Lee, Gi-Sung;Lee, Jong-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.708-715
    • /
    • 2016
  • Quality of experience (QoE) for multimedia services in macro-femtocell networks is one of the key issues for 5G mobile and wireless communications. A service management structure needs to guarantee the QoE for mobile users based on end-to-end negotiation to support service continuity. Resource management is necessary to maintain the QoE requirements of different multimedia applications, because service continuity may be impeded by delays. This paper proposes four types of resource management scheme to support consistent QoE for different multimedia services. For this purpose, a QoE structure is suggested, and a resource allocation scheme is proposed by utilizing a fixed amount of radio resources reserved for dedicated use to support QoE. Various multimedia services with different requirements (such as voice, image, and data) can be serviced simultaneously, because QoE can be provided under our proposed scheme. Simulation results show that our scheme provides better performance than a conventional scheme with respect to outage probability and total data throughput.

A Study on the Design of Network System for Defense Integrated Data Center Using NFV/SDN (NFV/SDN을 활용한 군(軍) 데이터센터 네트워크 체계 설계에 관한 연구)

  • Chae, Woong;Kwon, Taewook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.2
    • /
    • pp.31-36
    • /
    • 2020
  • The creation of the Defense Integrated Data Center(DIDC) has resulted in a reduction in manpower, operating costs, efficient and effective management of resources. However, it is difficult to effectively collect and manage the data of a large number of battlefields coming from equipments such as drones, robots, and IoT added to the fourth industrial revolution and the future battlefield. Therefore, we will propose the design of DIDC network system using NFV and SDN, which are emerging as the core technologies of 5G, a mobile communication technology. After analyzing the data sheet of each equipment, it is considered that by integrating the redundant functions, energy efficiency, resource utilization and effective network management will be possible.

(Turbo Decoder Design with Sliding Window Log Map for 3G W-CDMA) (3세대 이동통신에 적합한 슬라이딩 윈도우 로그 맵 터보 디코더 설계)

  • Park, Tae-Gen;Kim, Ki-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.9 s.339
    • /
    • pp.73-80
    • /
    • 2005
  • The Turbo decoders based on Log-MAP decoding algorithm inherently requires large amount of memory and intensive complexity of hardware due to iterative decoding, despite of excellent decoding efficiency. To decrease the large amount of memory and reduce hardware complexity, the result of previous research. And this paper design the Turbo decoder applicable to the 3G W-CDMA systems. Through the result of previous research, we decided 5-bits for the received data 6-bits for a priori information, and 7-bits for the quantization state metrics. The error correction term for $MAX^{*}$ operation which is the main function of Log-MAP decoding algorithm is implemented with very small hardware overhead. The proposed Turbo decoder is synthesized in $0.35\mu$m Hynix CMOS technology. The synthesized result for the Turbo decoder shows that it supports a maximum 9Mbps data rate, and a BER of $10^{-6}$ is achieved(Eb/No=1.0dB, 5 iterations, and the interleaver size $\geq$ 2000).

Optimum Power Allocation of Cooperative NOMA Systems based on User Relay (사용자 릴레이를 채택한 협동 NOMA 시스템의 최적 전력할당)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.25-33
    • /
    • 2017
  • NOMA (Non-orthogonal multiple access) system becoming a strong candidate for 5G cellular system of its high spectral efficiency. This paper considers an optimal power allocation scheme to minimize the outage probability of a user relay based cooperative NOMA system. We first derive the outage probabilities of the relay user (RU) and the destination user (DU) with selection combining. Based on these probabilities, the outage probability of the cooperative NOMA system is obtained. The analytical results are verified by Monte Carlo simulation. It is noticed that the outage probability of cooperative NOMA system has a convex function, the optimum power allocation coefficient, which satisfied the minimum outage probability, is calculated. Numerical examples show that the optimal power allocation coefficient increases with the required capacity of DU. While the capacity of DU is fixed, we noticed that the increase of the required capacity of RU decreases the optimal power allocation coefficient.

Effect of SIC Errors to Cooperative NOMA systems (SIC 에러가 협동 NOMA 시스템에 미치는 영향)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.35-42
    • /
    • 2017
  • NOMA (Non-orthogonal multiple access) system is the most promising multiple access technology to satisfy the requirements of the spectral efficiency and the performance of 5G cellular systems. NOMA system simultaneously serves multiple users in the power domain, and adapts SIC (Successive interference cancellation) at the receivers to cancel the interference from multiple users. Since in a realistic wireless fading channel the perfect SIC is impossible, the study of the effect of the imperfect SIC to a NOMA system is necessary. This paper considers a cooperative NOMA system with SIC error, and the performance of the system is analytically derived. And the optimum power allocation to minimize the system performance is obtained. When the transmit power is fixed, the distances between a base station and the relay is considered for different SIC errors. The derived analytical results are verified through Monte Carlo simulation, and the results are perfectly matched.

Path loss analysis of W-band using random forest (랜덤 포레스트를 이용한 W-대역의 경로손실 분석)

  • Cho, Yeongi;Kim, Kichul;Park, Juman;Choi, Jeong Won;Jo, Han-Shin
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.89-94
    • /
    • 2022
  • The W-band (75-110GHz) is a band that can utilize at least 10 times more bandwidth than the existing 5G band. Therefore, it is one of the bands suitable for future mobile communication that requires high speed and low latency, such as virtual and augmented reality. However, since the wavelength is short, it has a high path loss and is very sensitive to the atmospheric environment. Therefore, in order to develop a W-band communication system in the future, it is necessary to analyze the characteristics of path loss according to the channel environment. In this paper, to analyze the characteristics of the W-band path loss, the random forest technique was used, and the influence of the channel parameters according to the distance section was analyzed through the path loss data according to various channel environment parameters. As a result of the simulation, the distance has the highest influence on the path loss in the short distance, and the other channel environment factor is almost ignored. However, as the distance section became longer, the influence of distance decreased while the impact of clutter and rainfall increased.

Development of User Interface for High Frequency Digital Oscilloscope based on Python (파이썬기반 고주파 디지털 계측기 사용자 인터페이스 개발)

  • Jeong, Eui-Hoon;Kim, Yong-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.37-42
    • /
    • 2022
  • Recently, with the development of mobile communication technologies such as 5G, interest in oscilloscope technology based on high bandwidth and user-friendly UI is increasing. In this paper, we proposed a Python-based UI(user interface) SW for a high-bandwidth digital oscilloscope in connection with the study of a 13GHz band digital oscilloscope system. The proposed UI SW is designed not only to be executed integrally with the oscilloscope, but also to be run on a separate PC or laptop cooperating with the instrument through WiFi communication. Functions of the UI SW consists of displaying and analyzing signal data, storing signal data in an external storage device, generating test signal data, and reconfiguring the toolbar. Finally, we have shown that the proposed digital oscilloscope system operates normally by interworking test with the signal generator.

Real-time Implementation of the G.729 Annex A Using ARM9 $Thumb^{\circledR}$ Processor Core (ARM9 $Thumb^{\circledR}$ 프로세서 코어를 이용한 G.729A의 실시간 구현)

  • 성호상;이동원
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.63-68
    • /
    • 2001
  • This paper describes the details of ITU-T SGIS G.729A speech coder implementation using ARM9 Thumb/sup R/ processor core and various techniques used in the optimization process. ITU-T G.729 speech coder is the standard of the toll quality 8 kbit/s speech coding. The input to the speech encoder is assumed to be a 16 bits PCM signal at a sampling rate of 8000 samples per second. G.729A is reduced complexity version of the G.729 coder. This version is bit stream interoperable with the full version. The implemented coder requires 34.8 MIPS for the encoder and 8.1 MIPS for the decoder, 36.5 kBytes of program ROM and 6.3 kBytes of data RAM, respectively. The implemented coder is tested against the set of 9 test vectors provided by ITU-T for bit exact implementation.

  • PDF