• 제목/요약/키워드: 5052 aluminum alloy

검색결과 76건 처리시간 0.029초

Microstructure and Mechanical Properties of AA6061/AA5052/AA1050 Alloy Fabricated by Cold Roll-Bonding and Subsequently Annealed

  • Seong-Hee Lee;Sang-Hyeon Jo;Jae-Yeol Jeon
    • 한국재료학회지
    • /
    • 제33권11호
    • /
    • pp.439-446
    • /
    • 2023
  • Changes in the microstructure and mechanical properties of as-roll-bonded AA6061/AA5052/AA1050 three-layered sheet with increasing annealing temperature were investigated in detail. The commercial AA6061, AA5052 and AA1050 sheets with 2 mm thickness were roll-bonded by multi-pass rolling at ambient temperature. The roll-bonded Al sheets were then annealed for 1 h at various temperatures from 200 to 400 ℃. The specimens annealed up to 250 ℃ showed a typical deformation structure where the grains are elongated in the rolling direction in all regions. However, after annealing at 300 ℃, while AA6061 and AA1050 regions still retained the deformation structure, but AA5052 region changed into complete recrystallization. For all the annealed materials, the fraction of high angle grain boundaries was lower than that of low angle grain boundaries. In addition, while the rolling texture of the {110}<112> and {123}<634> components strongly developed in the AA6061 and AA1050 regions, in the AA5052 region the recrystallization texture of the {100}<001> component developed. After annealing at 350 ℃ the recrystallization texture developed in all regions. The as-rolled material exhibited a relatively high tensile strength of 282 MPa and elongation of 18 %. However, the tensile strength decreased and the elongation increased gradually with the increase in annealing temperature. The changes in mechanical properties with increasing annealing temperature were compared with those of other three-layered Al sheets fabricated in previous studies.

프루브 길이에 따른 A5052 겹치기 마찰교반접합 특성 (Characteristics of Friction Stir Lap Welded A5052 with Probe Length)

  • 고영봉;강채원;최준웅;박경채
    • 한국표면공학회지
    • /
    • 제42권6호
    • /
    • pp.294-300
    • /
    • 2009
  • The Friction Stir Welding (FSW) has mainly been used for making butt joints in Al alloys. The development of Friction Stir Lap Welding (FSLW) would expand the number of applications. In this study, for effective application on thin aluminum alloy lap joint, non-heat treatment A5052 alloys were joined by FSLW with the length of probe 2.3 mm and 3.0 mm. Investigating the characteristics of joint area showed the results were as below ; When the length of probe was 2.3 mm, good joint area was formed at all welding condition except for 600 rpm-700 mm/min. In the case of 3.0 mm probe length, there was formed good joint area without defects at 1500 rpm-100 mm/min. The width of joint area, position and size of defects were very important factors for FSLW, due to heat input and stirring intensity.

선박용 LED 등기구의 알루미늄 합금 방열판의 방열성능 향상을 위한 플라즈마 전해 산화의 공정변수 선정에 관한 연구 (Process Parameter Selection for Plasma Electrolytic Oxidation to Improve Heat Dissipation Performance of Aluminum Alloy Heat Sink for Shipboard LED Luminaries)

  • 이정형;정인교;한민수
    • 한국표면공학회지
    • /
    • 제51권6호
    • /
    • pp.415-420
    • /
    • 2018
  • The possibility of an improvement in heat dissipation performance of aluminum alloy heat sink for shipboard LED luminaries through plasma electrolytic oxidation (PEO) was investigated. Four different PEO coatings were produced on aluminum alloy 5052 in silicate based alkaline solution by varying current density ($50{\sim}200mA/cm^2$). On voltage-time response curves, three stages were clearly distinguished at all current densities, namely an initial linear increase, slowdown of increase rate, and steady state(constant voltage). It was found that the increase in current density caused the breakdown voltage to increase. Two different surface morphologies - coralline porous structure and pancake structure - were confirmed by SEM examination. The coralline porous structure was predominant in the coatings produced at lower current densities (50 and $100mA/cm^2$) while under high current densities(150 and $200mA/cm^2$) the pancake structure became dominant. The coating thickness was measured and found to be in a range between about $13{\mu}m$ and $44{\mu}m$, showing increasing thickness with increasing current density. As a result, $100mA/cm^2$ was proposed as an effective process parameter to improve the heat dissipation performance of aluminum alloy heat sink, which could lower the LED operating temperature by about 30%.

국부 표면개질된 알루미늄 합금 판재의 성형성 (Formability of Locally Surface-Modified Aluminum Alloy Sheets)

  • 이창길;김성준;이태호;박신상;한흥남
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.299-300
    • /
    • 2005
  • Surface friction welding (SFW) is a newly developed technology fur joining thin metal sheets, which utilizes friction between tool and weldment. In the present study, the 5052 and 1050 Al sheets were locally surface-modified using SFW technology. Formability of the locally surface-modified sheets was superior to that of the parent material. Yield or tensile strengths of the locally surface-modified specimens were lower then those of the parent material, but elongations of the locally surface-modified specimens were higher then that of the parent material.

  • PDF

Al 5052 함금 후판재의 전자빔 용접부 단면 형상과 강도에 관한 연구 (A Study on Electron Beam Weldmetal Cross Section Shapes and Strength of Al 5052 Thick Plate)

  • 김인호;이길영;주정민;박경태;천병선
    • Journal of Welding and Joining
    • /
    • 제27권3호
    • /
    • pp.73-79
    • /
    • 2009
  • This present paper investigated the mechanical properties and the microstructures of each penetration shapes classifying the conduction shape area and the keyhole shape area about electron beam welded 120(T)mm thick plated aluminum 5052 112H. As a result the penetration depth is increased linearly according to the output power, but the aspect ratio is decreased after the regular output power. In the conduction shape area, the Heat affected zone is observed relatively wider than the keyhole shape area. In the material front surface of the welded specimen, the width is decreased but the width in the material rear surface is increased. After the measuring the Micro Vikers Hardness, it showed almost similar hardness range in all parts, and after testing the tensile strength, the ultimate tensile strength is similar to the ultimate tensile strength of the base material in all the specimens, also the fracture point was generated in the base materials of all the samples. In the result of the impact test, impact absorbed energy of the Keyhole shape area is turned up very high, and also shown up the effect about four times of fracture toughness comparing the base material. In the last result of observing the fractographs, typical ductile fraction is shown in each weld metal, and in the basic material, the dimple fraction is shown. The weld metals are shown that there are no other developments of any new chemical compound during the fastness melting and solidification.

혼합모드상태에서의 Al 5052-H32 셀프 피어싱 리벳 접합부의 피로강도 평가 (Fatigue Strength Evaluation of Self-Piercing Riveted Al 5052-H32 Joints under Mixed Mode Loading Conditions)

  • 곽진구;강세형;김호경
    • 한국안전학회지
    • /
    • 제31권3호
    • /
    • pp.1-7
    • /
    • 2016
  • In this study, static and fatigue tests on the self-piercing riveted (SPR) joint were conducted using cross-shaped specimens with aluminum alloy (Al-5052) sheets. Mixed mode loading was achieved by changing the loading angles of 0, 45, and 90 degrees using a special fixture to evaluate the static and fatigue strengths of the SPR joints under mixed mode loading conditions. Simulations of the specimens at three loading angles were carried out using the finite element code ABAQUS. The fatigue specimens failed in an interfacial mode where a crack initiated at the upper sheet and propagated along the longitudinal direction and finally fractured Maximum principal stress, von-Mises effective stress failed to correlate the fatigue lifetimes at three loading angles. However, the equivalent stress intensity factor was found to be appropriate to correlate the fatigue lifetimes at three loading angles.

알루미늄 합금/고장력 강판 겹치기 마찰교반점용접에서 공구 형상과 삽입 깊이에 따른 접합 특성 (Effect of Tool Shape and Insertion Depth on Joining Properties in Friction Stir Spot Welding of Aluminum Alloy/high-strength Steel Sheets)

  • 안수호;정영근
    • 한국분말재료학회지
    • /
    • 제31권1호
    • /
    • pp.37-42
    • /
    • 2024
  • Friction stir spot welding (FSSW) is a solid-state joining process and a rapidly growing dissimilar material welding technology for joining metallic alloys in the automotive industry. Welding tool shape and process conditions must be appropriately controlled to obtain high bonding characteristics. In this study, FSSW is performed on dissimilar materials AA5052-H32 aluminum alloy sheet and SPRC440 steel sheet, and the influence of the shape of joining tool and tool insertion depth during joining is investigated. A new intermetallic compound is produced at the aluminum and steel sheets joint. When the insertion depth of the tool is insufficient, the intermetallic compound between the two sheets did not form uniformly. As the insertion depth increased, the intermetallic compound layer become uniform and continuous. The joint specimen shows higher values of tensile shear load as the diameter and insertion depth of the tool increase. This shows that the uniform formation of the intermetallic compound strengthens the bonding force between the joining specimens and increases the tensile shear load.

Al5052 합금소재와 고장력강판의 이종재료 클린칭 접합특성 (Characteristic of Mechanical Clinching for Al5052 to High-Strength Steels)

  • 이찬주;이상곤;이선봉;김병민
    • 대한기계학회논문집A
    • /
    • 제34권8호
    • /
    • pp.997-1006
    • /
    • 2010
  • 차체 경량화를 위해 알루미늄과 같은 경량금속의 사용은 이종소재 사용은 새로운 접합기술을 요구한다. 클린칭 접합은 이종소재 접합기술 중의 하나로 접합소재의 강도차이에 의해 접합특성이 달라진다. 본 연구에서는 Al5052 합금소재에 대한 고장력강판(SPFC440, 590, 780)에 대한 클린칭 접합특성을 평가하였다. 유한요소해석과 인장전단시험을 통해 클린칭 접합특성인 클린칭 접합의 기학적 구속량과 접합강도를 평가하였다. 상부소재가 고장력강판인 경우, SPFC780 은 상부소재의 네킹으로 클린칭 접합이 불가능하였다. 또한 상부소재의 강도가 증가함에 따라 접합강도가 증가하는 특성을 나타내었다. 하부소재가 고장력강판인 경우, 기하학적 구속량인 목두께 및 언더컷과 접합강도는 하부소재의 강도가 증가함에 따라 감소하는 경향을 나타내었다.

용접잔류응력장 중에서의 Aluminum-Alloy용접재료의 피로균열성장거동 연구 (A study on the fatigue crack growth behavior of aluminum alloy weldments in welding residual stress fields)

  • 최용식;정영석
    • Journal of Welding and Joining
    • /
    • 제7권1호
    • /
    • pp.28-35
    • /
    • 1989
  • The fatigue crack growth behavior in GTA butt welded joints of Al-Alloy 5052-H38 was examined using Single Edge Notched(SEN) specimens. It is well known that welding residual stress has marked influence on fatigue crack growth rate in welded structure. In the general area of fatigue crack growth in the presence of residual stress, it is noted that the correction of stress intensity factor (K) to account for residual stress is important for the determination of both stress intensity factor range(.DELTA.K) and stress ratio(R) during a loading cycle. The crack growth rate(da/dN) in welded joints were correlated with the effective stress intensity factor range(.DELTA.Keff) which was estimated by superposition of the respective stress intensity factors for the residual stress field and for the applied stress. However, redistribution of residual stress occurs during crack growth and its effect is not negligible. In this study, fatigue crack growth characteristics of the welded joints were examined by using superposition of redistributed residual stress and discussed in comparison with the results of the initial welding residual stress superposition.

  • PDF

S20C 리벳된 Al5052와 SPFC980Y 강철 resistance-element 점용접 접합부의 미세조직 발달 및 고강도-부식 저항 특성 (Corrosion-Resistant High Strength S20C Element Riveted Al5052-SPFC980Y Steel Joints by Resistance Element Spot Welding)

  • 백승엽;송종호;박승연;송일종;이현철
    • 한국산학기술학회논문지
    • /
    • 제22권2호
    • /
    • pp.794-801
    • /
    • 2021
  • 이 연구는 electric resistance element spot welding 프로세스를 도입하여 알루미늄 합금-강철의 이종 접합부의 기계적 강도 및 내식성을 향상시키기 위해 수행되었다. SPFC980Y 강철과 Al5052-H32가 각각 모재로써 적용되었고, S20C 강철은 리벳 element로써 음각과 양각의 형상으로 구분되며, Al5052-H32에 전기 저항 스폿 용접을 위해 리벳팅 되어 6.5 kA의 전류와 250 kgf/㎠의 가압력으로 접합되었다. 그 결과, 음각된 S20C element는 스폿 용접 공정 후 불안정한 너깃이 형성되는 반면, 양각된 S20C의 경우, 구조적으로 건전한 접합부로 건전한 내식성 및 탁월한 기계적 특성이 얻어졌다. FEM 시뮬레이션의 도입으로, 음각과 양각의 계면의 접합 특성이 수치적으로 밝혀졌으며, 시뮬레이션 결과는 미세조직 발달 양상을 수치적으로 뒷받침하였다. 이 연구는 element 스폿 용접된 H32-A5052 이종 접합부의 기계적 강도 및 부식 신뢰성에 대해 체계적으로 분석되었으며, 이 공정은 금속재료뿐만 아니라, 경량 비전도성 비철/비금속계 재료에도 적용 될 수 있기 때문에, 차세대 차체 경량화의 양산 기술로 확장 될 수 있다.