• Title/Summary/Keyword: 5.8GHz Antenna

Search Result 338, Processing Time 0.023 seconds

Study of Miniaturization of 2 Stages 2-Arm Sinuous Antenna (2단 2-암 시누어스 안테나의 소형화에 관한 연구)

  • Yoon, Sung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.374-382
    • /
    • 2017
  • This paper proposed a 2 stages 2-arm sinuous antenna that operates in frequency range 0.8-6GHz. The proposed antenna's total radius is 60mm, in which 1st stage's radius is 50mm which is designed as self-complementary structure(cell's angle width $90^{\circ}$) with 8 cell, and 2nd stage is composed of non-self-complementary structure with 0.5 cell of cell's angle width $720^{\circ}$ in the radius width 10mm. Measurement's result shows that -10dB return loss starts at 0.807GHz, but 1 stage 2-arm sinuous antenna that use the same radius starts at about 0.878GHz, so proposed the possibility of the miniaturization of the sinuous antenna.

Design of Active Antenna Diplexers Using UWB Planar Monopole Antennas (초광대역 평면형 모노폴 안테나를 이용한 능동 안테나 다이플렉서의 설계)

  • Kim, Joon-Il;Lee, Won-Taek;Chang, Jin-Woo;Jee, Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.9
    • /
    • pp.1098-1106
    • /
    • 2007
  • This paper presents active antenna diplexers implemented into an ultra-wideband CPW(Coplanar Waveguide) fed monopole antennas. The proposed active antenna diplexer is designed to direct interconnect the output port of a wideband antenna to the input port of two active(HEMT) devices, where the impedance matching conditions of the proposed active integrated antenna are optimized by adjusting CPW(Coplanar Waveguide) feed line to be the length of 1/20 $\lambda_0$(@5.8 GHz) in planar type wideband antenna. The measured bandwidth of the active integrated antenna shows the range from 2.0 GHz to 3.1 GHz and from 5.25 GHz to 5.9 GHz. The measured peak gains are 17.0 dB at 2.4 GHz and 15.0 dB at 5.5 GHz.

Design of Multi-band Ceramic Chip Antenna for WLAN using LTCC Technology (LTCC 공정기술을 이용한 무선랜용 다중대역 칩 안테나 설계)

  • 박영호;이용기;이윤도;이상원;천창율
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.8
    • /
    • pp.443-446
    • /
    • 2004
  • In this paper, a multi-band ceramic chip antenna for WLAN(Wireless LAN) applications is designed. The design target is to obtain 0 dBi of coverage gain with omni directional radiation pattern. The antenna is fabricated using Low Temperature Co-fired Ceramic(LTCC) technology. The size of the chip antenna is $2.2{\times}9.65{\times}1.02$mm. The measured antenna gain is 1 dBi at 2.44 GHz and 0.5 dBi at 5.5 GHz. The omni directional radiation pattern for the two operating bands is obtained. The measured bandwidth(S11=-10 dB) are 90 MHz at 2.44 GHz and 1280 MHz at 5.5 GHz respectively

The Design and Modeling of a Reconfigurable Inset-Fed Microstrip Patch High Gain Antenna for Wireless Sensor Networks

  • Phan, Duy-Thach;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.145-150
    • /
    • 2011
  • In this paper, we designed a tunable microstrip patch antenna using RF MEMS switches. The design and simulation of the antenna were performed using a high frequency structure simulator(HFSS). The antenna was designed for use in the ISM band and either operates at 2.4 GHz or 5.7 GHz achieving -10 dB return-loss bandwidths of 20 MHz and 180 MHz, respectively. In order to obtain high efficiency and improve the ease of integration, a high resistivity silicon(HRS) wafer on a glass substrate was used for the antenna. The antenna achieved high gains: 8 dB at 5.7 GHz and 1 dB at 2.4 GHz. The RF MEMS DC contact switches were simulated and analyzed using ANSYS software.

Study on the CPW Structure Antenna (CPW 구조 안테나 연구)

  • Park, Yong-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1003-1008
    • /
    • 2017
  • In this paper, we studied the design and fabrication of double T Structure with CPW antenna at around 5 GHz band.. To improve of frequency properties of antenna, Double T Structure with CPW antenna was simulated by HFSS(: High Frequency Structure Simulator). A double T Structure with CPW antenna was designed and fabricated by photolithograph on an FR4 substrate (dielectric constant of 4.4 and thickness of 1.6 mm). The fabricated A double T Structure with CPW antenna showed a center frequency, the minimum return loss and impedance were 5.29GHz, -34dB, and 390MHz, $49.6{\Omega}$ respectively.

Circular Ring Open-Ended Monopole Antenna with Strip for WLAN Dual-Band Operations

  • Yoon, Joong-Han
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • A novel design of a simple circular ring with open-ended monopole antenna for wireless local area network (WLAN) applications is proposed in this article. The proposed antenna consists of an open-ended circular ring and $50-{\Omega}$ microstrip feed-line. The proposed antenna is capable of generating two separate resonant modes with good impedance-matching conditions. A prototype of the proposed antenna is designed, fabricated, and measured. Acceptable agreement between the measurement and simulation results is achieved. Experimental results show that the proposed antenna has operating bandwidths of 1.99-3.04 GHz and 5.08-6.1 GHz with a return loss of less than -10 dB, covering the required bandwidths of the 2.4/5.2/5.8-GHz WLAN standards. This is a microstrip antenna for IEEE 802.11a/b wireless local area networks applications. Meanwhile, the two-dimensional (2D) radiation patterns and three-dimensional (3D) gain performance of the antenna are also observed and discussed.

Design of Loop Type Inserting Slot Antenna to Apply Bluetooth/Zigbee/WiMax/WLAN(2.4~5.82 GHz) Band (Bluetooth/Zigbee/WiMAX/WLAN(2.4~5.82 GHz) 대역 응용을 위해 루프 형태를 삽입한 슬롯 안테나 설계)

  • Hong, Yoon-Gi;An, Sang-Chul;Jung, Hoon;Hong, Won-Gi;Jung, Cheon-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.5
    • /
    • pp.435-443
    • /
    • 2009
  • In this paper, we propose a microstrip slot antenna that works in Bluetooth, Zigbee, WiMAX and WLAN frequency bands($2.4{\sim}5.825\;GHz$). To get the wide bandwidth from the microstrip antenna proposed, we insert a pair of parastic strips along the feed line on the FR-4 dielectric substance(${\varepsilon}_r=4.8$). Furthermore, a simple geometrical rotation with quadrilateral slot is designed to maximize the bandwidth and to gain a wider frequency band than the conventional rectangular slot antenna. A additional design of the loop type is added to a cactus-shaped patched for 2.4 GHz ISM frequency band. The total measured bandwidth of the antenna is from 2.4 GHz to 6 GHz and the maximum gains of the antenna are 3.82 dBi, 4.48 dBi, 6.41 dBi and 6.65 dBi at the frequencies of 2.4 GHz, 3.5 GHz, 5.25 GHz and 5.77 GHz.

A Small Size Broadband MEMS Antenna for 5 GHz WLAN Applications (5 GHz 무선랜 응용을 위한 소형 광대역 MEMS 안테나)

  • Kim Ji-Hyuk;Kim Hyeon Cheol;Chun Kukjin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.2 s.344
    • /
    • pp.81-87
    • /
    • 2006
  • A small size broadband microstrip patch antenna with small ground plane has been fabricated using MEMS. Multiple layer substrates we used to realize small size and broadband characteristics. The microstrip patch is divided into 4 pieces and each patch is connected to each other using a metal microstrip line. The fabrication please process is simple and only one mask is needed. Two types of microtrip antennas are fabrication Type A is the microstrip antenna with metal lines and type B is the microstrip antenna without metal lines. The size of proposed microstip antenna is $8{\times}12{\times}2mm^3$ and the experimental results show that the antenna type A and type B have the bandwidth of 420MHz at 5.3 GHz and 480MHz at 5.66 GHz, respectively

Dual Band-notched Monopole Antenna for 2.4 GHz WLAN and UWB Applications (이중대역 저지특성을 가지는 2.4 GHz WLAN 및 UWB 겸용 모노폴 안테나)

  • Lee, Ki-yong;Lee, Young-soon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.2
    • /
    • pp.193-199
    • /
    • 2017
  • In the paper, a dual band-notched monopole antenna is proposed for 2.4 GHz WLAN (2.4 ~ 2.484 GHz) and UWB (3.1 ~ 10.6 GHz) applications. The 3.5 GHz WiMAX band notched characteristic is achived by a pair of L-shaped slots instead of the previous U-shaped slot on the center of the radiating patch, whereas the 7.5 GHz band notched characteristic is achived by C-shaped strip resonator placed near to the microstrip feed line. The measured impedance bandwidth (${\mid}S_{11}{\mid}{\leq}-10dB$) is 8.62 GHz (2.38 ~ 11 GHz) which is sufficient to cover 2.4 GHz WLAN and UWB band, while measured band-notched bandwidths for 3.5 GHz WiMAX and 7.5 GHz bnad are 1.13 GHz (3.15 ~ 4.28 GHz) and 800 MHz (7.2 ~ 8 GHz) respectively. In particular, it has been observed that antenna has a good omnidirectional radiation patterns and higher gain of 2.51 ~ 6.81 dBi over the entire frequency band of interest.

Design of 2.4/5.8GHz Dual-Frequency CPW-Fed Planar Type Monopole Active Antennas (2.4/5.8GHz 이중 대역 코프래너 급전 평면형 모노폴 능동 안테나 설계)

  • Kim, Joon-Il;Chang, Jin-Woo;Lee, Won-Taek;Jee, Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.8
    • /
    • pp.42-50
    • /
    • 2007
  • This paper presents design methods for dual-frequency(2.4/5.8GHz) active receiving antennas. The proposed active receiving antennas are designed to interconnect the output port of a wideband antenna to the input port of an active device of High Electron Mobility Transistor directly and to receive RF signals of 2.4GHz and 5.2GHz simultaneously where the impedance matching conditions are optimized by adjusting the length of $1/20{\lambda}_0$(@5.8GHz) CPW transmission line in the planar antenna The bandwidth of implemented dual-frequency active receiving antennas is measured in the range of 2.0GHz to 3.1GHz and 5.25GHz to 5.9GHz. Gains are measured of 17.0dB at 2.4GHz and 15.0dB at 5.2GHz. The measured noise figure is 1.5dB at operating frequencies.