• Title/Summary/Keyword: 5.8GHz Antenna

Search Result 337, Processing Time 0.024 seconds

Design and Fabrication of 5.8GHz Band Microstrip Array Antenna (5.8GHz 대역 마이크로스트립 배열 안테나 설계 및 제작)

  • Kim, P.S.;Lee, J.H.;An, J.S.;Kim, T.H.;Ha, D.H.
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.478-483
    • /
    • 2003
  • In this paper, in order to fabricate the circularly polarized diversity system which will mitigate multipath fading, 5.8GHz band microstrip array antenna were designed and fabricated. These antenna were designed using Ensemble 6.0 program and the fabricated antenna were vertical and horizontal polarized antenna, left-handed circularly polarized antenna, and right-handed circularly polarized antenna. The designed antenna parameters included S11 and impedance characteristics of fabricated antenna were measured using Network Analyzer(8753ES). From the measurement results, the S11 for each polarization antenna at resonance frequency of 5.8GHz band was showed -38dB, -44dB, and -50dB respectively and it was similar to the simulation result, and also the impedance can be matched at $50{\Omega}$. In order to compare polarization characteristics, broadband measurement was also conducted in this paper.

  • PDF

A Study of Wideband Method for the Millimeter-wave Planar Antenna (밀리미터파대 평면형 안테나의 광대역화 방안)

  • 이형수;설동범;이윤경;백락준;윤현보
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.2
    • /
    • pp.206-216
    • /
    • 2000
  • In this paper, the linear tapered slot(LTS) antenna and linear constant tapered slot(LCTS) antenna are optimized for millimeter-wave antenna by the finite difference time domain(FDTD) method and then fabricated and measured. The microstrip-to-slot transition is proposed with the widen $\lambda$/4 open stub as feeder for wide bandwidth of 16.5GHz($VSWR\leq2$). The results of the calculation and measurement, the bandwidth of LTS antanna is 8.3GHz(26.47%) and 7.1792GHz(22.4%) respectively. Also, the bandwidth of LCTS antenna is 8.1GHz(26.47%) and 6.3243GHz(20.43%) respectively.

  • PDF

Compact Broad-band Antenna Using Archimediean Spiral Slot (알키메디안 스파이럴 슬롯을 이용한 소형화된 광대역 안테나)

  • Kim, June-Hyong;Cho, Tae-June;Lee, Hong-Min
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.3
    • /
    • pp.50-56
    • /
    • 2010
  • In this paper, compact broad-band antenna using circular spiral slot and CPW (coplanar waveguide) feed is proposed. The proposed antenna is designed on the same plane of the substrate by using CPW fed structure, archimediean spiral slot structure. So it was achieved both the size of compact antenna and the broad band. A archimediean spiral slot structure is introduced for resonance of medium band operation. The distances of a CPW feeder line and a ground plane are modified for impedance matching and lower/higher band operation. The proposed antenna has a compact size ($8mm\;{\times}\;13mm$) and it is etched on the FR-4 (relative dielectric constant 4.4, thickness 0.8mm) dielectric substrate. The simulated impedance bandwidth (VSWR $\leq$ 2) and maximum gain of the proposed antenna are 5.98GHz (4.1GHz ~ 10.08GHz) and 3.97dBi, respectively. The measured impedance bandwidth (VSWR $\leq$ 2) and maximum gain of the proposed antenna are 6.02GHz (4.48GHz ~ 10.5GHz) and 2.68dBi, respectively. The simulation and measured result shows good impedance matching and radiation pattern over the interesting frequency bands. It can be applied to antenna of broad-band wireless communication system.

UWB Antenna with Triple Band-Notched Characteristics Using the Spiral Resonator and the CSRR (스파이럴 공진기와 CSRR을 이용한 삼중 대역 저지 특성을 갖는 UWB 안테나)

  • Kim, Jang-Yeol;Lee, Seung-Woo;Kim, Nam;Lee, Sang-Min;Oh, Byoung-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1078-1091
    • /
    • 2011
  • In this paper, a triple band-notched UWB antennas using a spiral resonator and a complementary split ring resonator is proposed as two types. The band-rejection characteristic of the designed antenna is analyzed through the structure and equivalent circuit model of spiral resonator and CSRR. The measured results of first type antenna show that a VSWR less than 2 was satisfied with a resonant frequency in the range of 1.16~12 GHz and it can be obtained the band-stop performance at 3.3~3.85 GHz, 5.15~6.1 GHz, and 8.025~8.5 GHz. The measured results of second type antenna show that a VSWR less than 2 was satisfied with this antenna works from 1.79 to 12 GHz and it can be achieved the band-notched performance at 3.3~3.88 GHz, 5.12~5.94 GHz, and 8.025~8.51 GHz. Through the measured results, the designed antenna was satisfied UWB band except for triple notched bands.

5.8 GHz Microwave Wireless Power Transmission System Development and Transmission-Efficiency Measurement (5.8 GHz 마이크로파 무선전력전송 시스템 개발 및 전송효율측정)

  • Lee, Seong Hun;Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.59-63
    • /
    • 2014
  • Previous studies have selected wireless power transmission system using 2.45 GHz of ISM band, but the researches for 5.8 GHz microwave wireless power transmission have been relatively rare. The 5.8 GHz has some advantages compared with 2.45 GHz. Those are smaller antenna and smaller integrated system for RFIC. In this paper, the 5.8 GHz wireless power transmission system was developed and transmission efficiency was measured according to the distance. A transmitter sent the amplified microwaves through an antenna amplified by a power amplifier of 1W for 5.8 GHz, and a receiver was converted to DC from RF through a RF-DC Converter. In the 1W 5.8GHz wireless power transmission system, the converted currents and voltages were measured to evaluate transmission efficiency at each distance where LED lights up to 1m. The RF-DC Converter is designed and fabricated by impedance matching using full-wave rectifier circuit. The transmission-efficiency of the system shows from 1.05% at 0cm to 0.095% at 100cm by distance.

Multi-Band Chip Slot Antenna for Mobile Devices (무선 통신 기기에 적합한 다중 대역 칩 슬롯 안테나)

  • Nam, Sung-Soo;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1264-1271
    • /
    • 2009
  • In this paper, the chip slot antenna which is used for mobile devices and designed for multi-band is proposed. The proposed antenna is comprised of a chip antenna(10 mm$\times$20 mm$\times$1.27 mm) and a system circuit board(30 mm$\times$60 mm$\times$0.8 mm). The chip slot antenna is mounted on the system circuit board and the end of F-type strip line which is patterned on the chip antenna is connected by a via with a ground plane of the system circuit board. So, a chip antenna radiates effectively the energy by transition between a microstrip line of the system circuit board and a open slot structure of the chip antenna. In the results of proposed antenna, impedance bandwidth of 3:1 VSWR(-6 dB return loss) is 1.98 GHz(1.61~3.59 GHz) and 0.8 GHz(5.2~6 GHz). So, it can cover multi-band of DCS, PCS, UMTS, WLAN. The proposed antenna can be applied to mobile devices.

Design and Implementation of Dual Wideband Dipole Type Antenna for the Reception of S-DMB and 2.4/5 GHz WLAN Signals (S-DMB와 2.4/5 GHz WLAN 신호 수신을 위한 이중 광대역 다이폴형 안테나의 설계 및 구현)

  • Kim, Sung-Min;Yang, Woon-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.11 s.114
    • /
    • pp.1021-1029
    • /
    • 2006
  • In this paper, we designed and implemented a dual wideband dipole type antenna for the reception of S-DMB (Satellite Digital Multimedia Broadcasting) and 2.4/5 GHz WLAN(Wireless Local Area Network) signals. The proposed antenna based on conventional monopole type dual band antenna was implemented as planar wideband dipole type antenna with the volume of $8{\times}33.8{\times}1.68mm^3$. The proposed antenna is printed type on FR4 substrate of 1.6 mm thick and composed of a dipole type antenna for low frequency band and two symmetric structured resonance elements for high frequency band. We confirmed antenna area with dense surface current for each frequency band with simulation. By varying the length of the antenna area with dense surface current, we could vary resonance frequency of each frequency band separately. Impedance bandwidths$(VSWR{\leq}2)$ are 362 MHz(14.23 %) for 2 GHz band and 1188 MHz(22.13, %) for 5 GHz band which show wideband characteristic. Measured maximum gains were 4.33 dBi for 2 GHz band and 5.48 dBi for 5 GHz band which showed improved performance. And the implemented antenna has a good omni-directional radiation pattern characteristic.

Design for Trapezoidal Planar UWB Antenna Using Symmetry Meander Feedline (대칭 미앤더 급전 선로를 이용한 사다리꼴 평면 UWB 안테나 설계)

  • Kim, Tae-Geun;Min, Kyeong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.739-745
    • /
    • 2009
  • This paper presents a design for trapezoidal planar UWB(Ultra Wide-band) antenna using symmetry meander line to realize broad bandwidth at low frequency region. The size of proposed design antenna is $15.5{\times}21{\times}1.6mm^3$ and dielectric substrate considered in design has 4.4 of relative permittivity. The calculated bandwidth is from 1.31 GHz to 10.83 GHz and the measured return loss is 1.5 GHz to 10.6 GHz at -10 dB below, and satisfies with the UWB antenna's bandwidth. The simulated and measured radiation patterns show fine agreement with each other at each frequency.

Study on the Array type antenna of 1.8GHz (1.8GHz 대역용 배열 구조 안테나 연구)

  • Park, Yong-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.10
    • /
    • pp.929-934
    • /
    • 2016
  • In this paper, we studied the design and fabrication of array antenna at around 1.8 GHz band. To improve of frequency properties of antenna, single feed microstrip patch antenna was simulated by HFSS(High Frequency Structure Simulator). A $1{\times}2$ array antenna of 1.8 GHz for LTE band was designed and fabricated by photolithography on an FR4 substrate (dielectric constant of 4.4 and thickness of 0.8 mm). The fabricated antenna was analyzed by network analyzer. The measured results agree well with the simulations, which confirmed the validity of this study. The fabricated $1{\times}2$ array antenna showed a center frequency, the minimum return loss and impedance were 1.82GHz, -30.5dB, and $49.6{\Omega}$ respectively.

Quadruple Band-Notched Trapezoid UWB Antenna with Reduced Gains in Notch Bands

  • Jin, Yunnan;Tak, Jinpil;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • A compact ultra-wide band antenna with a quadruple band-notched characteristic is proposed. The proposed antenna consists of a slotted trapezoid patch radiator, an inverted U-shaped band stop filter, a pair of C-shaped band stop filters, and a rectangular ground plane. To realize the quadruple notch-band characteristic, a U-shaped slot, a complementary split ring resonator, an inverted U-shaped band stop filter, and two C-shaped band stop filters are utilized in this antenna. The antenna satisfies the -10 dB reflection coefficient bandwidth requirement in the frequency band of 2.88-12.67 GHz, with a band-rejection characteristic in the WiMAX (3.43-3.85 GHz), WLAN (5.26-6.01 GHz), X-band satellite communication (7.05-7.68 GHz), and ITU 8 GHz (8.08-8.87 GHz) signal bands. In addition, the proposed antenna has a compact volume of $30mm{\times}33.5mm{\times}0.8mm$ while maintaining omnidirectional patterns in the H-plane. The experimental and simulated results of the proposed antenna are shown to be in good agreement.