• Title/Summary/Keyword: 5.8GHz Antenna

Search Result 337, Processing Time 0.025 seconds

Design and Fabrication of Microstrip slot Antenna for using ISM (ISM용 마이크로스트립 슬롯 안테나 설계 및 제작)

  • Park, Seong-Il;Ko, Young-Hyuk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.580-583
    • /
    • 2007
  • In this paper, we proposed a slot antenna for dual band ISM that was transformed from a slot antenna structure. Proposed antenna was designed and fabricated that transformed feed line was changed existing slot antenna feed line to appear resonances at dual band. Bandwidth of the designed and fabricated slot antenna for ISM dual band is 8.23%, 4.8% at the resonated frequency at 2.45 GHz, 5 GHz. And we observed the resonant frequency and bandwidth according to change of feed line and slot length. Also, the measured radiation pattern characteristic of fabricated antenna is compared and analyzed E-plane and H-plane at 2.45 GHz, 5GHz.

  • PDF

Design and Implementation of UWB Antenna with Band Rejection Characteristics (대역저지 특성을 갖는 초광대역 안테나 설계 및 구현)

  • Yang, Woon Geun;Nam, Tae Hyeon;Yu, Jae Seong;Oh, Hee Oun
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.1
    • /
    • pp.31-36
    • /
    • 2018
  • In this paper, we designed and implemented an ultra wideband(UWB) antenna with band rejection characteristics. The proposed antenna consists of a planar radiation patch with slots and ground planes on both sides. Due to the slots in the radiation patch, the antenna shows band rejection characteristics. U-type slot contributes for wireless local area network(WLAN, 5.15~5.825 GHz) band rejection and n-type slot contributes for X-Band(7.25~8.395 GHz) band rejection. To make voltage standing wave ratio(VSWR) less than 2.0 for UWB frequency band except rejection bands, the shapes of planar radiation patch and ground plane was modified. The Ansoft 's high frequency structure simulator(HFSS) was used for the design process and simulations of the proposed antenna. The simulated antenna showed VSWR less than 2.0 for all UWB band excepts for dual rejection bands of 5.15 ~ 5.94 GHz and 7.02 ~ 8.45 GHz. And measured VSWR for the implemented antenna is less than 2.0 for all UWB band of 3.10~10.60 GHz excluding dual rejection bands of 5.12~5.95 GHz and 7.20~8.58 GHz.

Design and Fabrication of Microstrip Hybrid Slot Antenna Fed by CPW for Wireless LAN at 5.8GHz Band (5.8GHz 대역의 무선LAN용 CPW급전 마이크로스트립 하이브리드 슬롯 안테나 설계 및 제작)

  • 고수미;이권익;김홍수
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.175-178
    • /
    • 2002
  • In This paper, a microstrip slot antenna is designed and fabricated for wireless LAN at 5.8GHz band. The microstrip slot antenna is fed by CPW and formed the inductively slot and tile capacitively slot. To obtain wideband, the inductively slot is designed at 5.3GHz and the capacitively slot is designed at 5.8GHz. Resonant frequency of the fabricated microstrip slol antenna is 5.BCD, the bandwidth for VS%<1.5 is 29% and the gain is 4.6dB. The 3-dB beamwidth of E-plane and H-plane is 80 “ and 120 ”, respectively

  • PDF

A Study on the Design of Dual-Band Small Pacth Antenna using T-shaped Feeder and Spiral Structure (T자형 급전선과 스파이럴구조를 이용한 이중대역 소형패치 안테나 설계에 관한 연구)

  • Lee, Yun-Min;Shin, Jin-Seob
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.35-40
    • /
    • 2022
  • This paper proposes an antenna that is located outside the PCB substrate of an electronic product to enable wireless communication in the ISM band. The PCB designed the T-shaped OPEN-STUB power supply line to be miniaturized so that it does not interfere with parts or interfere with design. The characteristics of the antenna were confirmed in the 2.4GHz and 5.8GHz bands using a T-shaped stub feeder and a spiral structure. The size of the antenna is 5mm in width × 6.5mm in length, and the thickness of the PCB is 1.2T. As a result of measurement of the manufactured antenna, it was possible to obtain a return loss of -10dB or more at 2.4GHz and 5.8GHz. In the E-plane, the gain was -4.45 dBi, and in the H-plane, the gain was -1.05 dBi. Therefore, the proposed small antenna for wireless communication showed excellent performance.

Analysis of Tapered Slot Antenna for UWB with Directivity Characteristic (지향성 특성을 갖는 UWB 용 테이퍼드 슬롯 안테나 분석)

  • Kim, Sun-Woong;Choi, Dong-You
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.691-697
    • /
    • 2016
  • In this paper, we propose the antenna to appropriate for a UWB communication system, and it meets characteristics for location recognition in predetermined range. Proposed tapered slot antenna was designed through the HFSS simulation tool of Ansys. Inc., it was produced by Taconic TRF-45 based on dielectric constant of 4.5, loss tangent 0.0035, thickness 1.62mm. The tapered slot antenna is analyzed the standing wave ratio and reflection coefficient, radiation pattern in the frequency domain. The impedance bandwidth range of the produced tapered slot antenna is from 3.8 ~ 8.9GHz to 5.1GHz, E-plane and H-plane radiation pattern meet directional antenna characteristics for indoor and outdoor location recognition in predetermined range. The antenna gain is 7.4 dBi(6GHz)in the simulation, the result of measurement demonstrated 7.4 dBi(6 GHz) of antenna maximum gain. Proposed tapered slot antenna meets UWB communication system but simulated and measured results were slightly different.

Internal Hook-shaped Patch Antenna for Multiband Wireless USB Dongle Applications (다중대역 무선 USB 동글용 내장 Hook형 안테나)

  • Jeong, Seong-Jae;Hwang, Keum-Cheol;Shin, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.11
    • /
    • pp.91-96
    • /
    • 2010
  • In this paper, an internal USB dongle antenna with a circular hook-shaped patch is proposed. The proposed antenna comprises of a circular hook-shaped patch and a monopole stub. The proposed antenna with the dimension of $10mm{\times}50mm{\times}0.8mm$ was fabricated on commercial FR-4 substrate with a dielectric constant of 4.6 and tangent loss of 0.025. The designed antenna exhibits three different resonant bandwidths, 2.4 GHz-2.5 GHz, 3.4 GHz-3.6 GHz, and 5.15 GHz-5.825 GHz. The measured radiation patterns are omni-directional at measured frequencies. Therefore, the proposed antenna is suitable for wireless USB dongle antenna that can support multiband wireless services such as WLAN, WiMAX and Bluetooth.

A Dual-Band Compact Folded Patch Antenna (이중 대역 소형 평면 패치 안테나)

  • 김태영;정종호;박동국;박익모
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.1
    • /
    • pp.47-53
    • /
    • 2003
  • In this paper we proposed a novel dual-band compact folded patch antenna with the same linear polarizations and high isolation characteristic between the two frequency range. The antenna is loaded with a high permittivity dielectric material in order to reduce the antenna size and open circuit stubs are used in order to broaden the bandwidth. The fractional bandwidths of the optimized antenna with demensions 4 mm${\times}$3 mm${\times}$5 mm are 3.0 % at 5.6 GHz band and 2.8 % at 5.8 GHz band, respectively. The isolation characteristic between the two ports is less than -26 dB within the operating frequency range.

Design of the Microstrip antenna for 5.8GHz WLAN Application (5.8GHz 대역 WLAN용 마이크로스트립 안테나 설계)

  • Jo, Sung-sik;Lim, Tae-kyun;Ju, Yan-ro;Kim, Kab-ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.453-456
    • /
    • 2009
  • In this paper, a Microstrip antenna for wireless LAN is designed in HyperLAN 5GHz. The IEEE 802.11a have allocated HyperLAN band. We proposed CPW-fed antenna structure for compact antenna. This structure shows that a ground plane and a patch plane are existed at one layer. The proposed antenna is designed on FR-4 substrate with a relative dielectric constant 4.3, thickness of 1.5mm and tangent loss 0.02. The designed antenna shows that VSWR is below 2 and has good return loss below -10dB over the 5.725~5.825GHz bandwidth with HyperLAN.

  • PDF

Compact Triple-Band Monopole Antenna for WLAN/WiMAX-Band USB Dongle Applications

  • Shi, Ya Wei;Xiong, Ling;Chen, Meng Gang
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.21-25
    • /
    • 2015
  • A miniaturized triple-band antenna suitable for wireless USB dongle applications is proposed and investigated in this paper. The presented antenna, simply consisting of a circular-arc-shaped stub, an L-shaped stub, a microstrip feed line, and a rectangular ground plane has a compact size of $16mm{\times}38.5mm$ and is capable of generating three separate resonant modes with very good impedance matching. The measurement results show that the antenna has several impedance bandwidths for S11 ${\leq}$ -10 dB of 260 MHz (2.24 GHz to 2.5 GHz), 320 MHz (3.4 GHz to 3.72 GHz), and 990 MHz (5.1 GHz to 6.09 GHz), which can be applied to both 2.4/5.2/5.8 GHz WLAN bands and 3.5/5.5 GHz WiMAX bands. Moreover, nearly-omni-directional radiation patterns and stable gain across the operating bands can be obtained.

A study of U-slot Microstrip Antenna (U-slot 마이크로 스트립 안테나 연구)

  • Park, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3623-3627
    • /
    • 2012
  • The modern society has become full-fledged entry into the information age since spread of Internet. In the information age, internet was developed from the wired access to the wireless Internet access. When a surge in demand for wireless Internet access, efficiency and performance of 2.4GHz band which leads to saturation of the communication was significantly fall. Accordingly, the communication of the 5GHz band came to be interested. In this paper, we studied the design and fabrication of u-slot microstrip patch antenna to be used in wireless communication systems operating at around 5GHz band. To obtain antenna parameters such as patch size, inter patch space, antenna was simulated by HFSS(High Frequency Structure Simulator). From these parameters, u-slot microstrip patch antenna is fabricated using FR-4 substrate of dielectric constant 4.4. The characteristics of fabricated antenna were analyzed by network analyzer.