• Title/Summary/Keyword: 5.8GHz Antenna

Search Result 337, Processing Time 0.025 seconds

A Novel Monopole Antenna for ISM 2.45GHz/5.8GHz Dual Band Characteristics by a Linear Monopole Antenna Combined with a Crossed Planar Monopole Antenna (선형 모노폴 안테나와 십자형 모노폴 안테나의 결합에 의한 ISM 2.45GHz/5.8GHz 이중대역 특성을 가지는 안테나 설계)

  • Shim, Jae-Ruen
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.6
    • /
    • pp.515-519
    • /
    • 2015
  • In this paper, we suggested the novel monopole antenna for dual band characteristics by a linear monopole antenna combined with crossed planar monopole antenna. The target frequency is ISM(Industrial Scientific Medical) 2.45GHz/5.8GHz. The distinctive features of the proposed antenna in this paper is based on the slit in the surface of a crossed planar monopole for the dual band characteristics and the omnidirectional radiation patterns. The compact size of the proposed antenna is $36mm{\times}5.4mm{\times}5.4mm$. According to the simulation results, the bandwidth, the reflection coefficients below -10dB, of 2.45GHz and 5.8GHz are 150MHz and 1.43GHz, respectively. Consequently the proposed antenna structures is apply to the antenna for dual band characteristics.

Design of Compact Slot Antenna for 5.8 GHz RFID (5.8 GHz RFID용 소형 슬롯 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.71-72
    • /
    • 2013
  • In this paper, a design method for a compact slot antenna for 5.8 GHz RFID band (5.725-5.875 GHz) is studied. The proposed slot antenna is size-reduced by bending both ends of the straight slot in "${\Gamma}$"-shape, and a rectangular feed patch is located inside the slot. The effects of slot length, location of feed patch, and width and length of feed patch on the antenna performance are examined. A prototype antenna with optimized parameters for 5.8 GHz band is fabricated on an FR4 substrate and tested experimentally. The experimental results show that the frequency band for a VSWR < 3 ranges 5.72-6.13 GHz (bandwidth 410 MHz), and it corresponds fairly well with the simulated band 5.64-5.97 GHz (bandwidth 330 MHz). The fabricated antenna shows good radiation performance such as maximum power density in both directions normal to the slot plane, and low cross-polarization level of < -20 dB.

  • PDF

Compact Slot Antenna for 5.8 GHz RFID (5.8 GHz RFID용 소형 슬롯 안테나)

  • Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2763-2768
    • /
    • 2013
  • In this paper, a design method for a compact slot antenna for 5.8 GHz RFID band (5.725-5.875 GHz) is studied. The proposed slot antenna is size-reduced by bending both ends of the straight slot in "I"-shape, and a rectangular feed patch is located inside the slot. The effects of slot length, location of feed patch, and width and length of feed patch on the antenna performance are examined. A prototype antenna with optimized parameters for 5.8 GHz band is fabricated on an FR4 substrate and tested experimentally to verify the results of this study. The experimental results show that the frequency band for a VSWR < 3 ranges 5.72-6.13 GHz (bandwidth 410 MHz), and it corresponds fairly well with the simulated band 5.64-5.97 GHz (bandwidth 330 MHz). The fabricated antenna shows good radiation performance such as maximum power density in both directions normal to the slot plane, low cross-polarization level of < -20 dB, and realized gain > 0 dBi within the frequency band.

Structural Modification of Crossed Planar Monopole Antenna for ISM 2.45GHz/5.8GHz Dual Band Characteristics (ISM 2.45GHz/5.8GHz 이중대역 특성을 위한 십자형 평판 모노폴 안테나의 구조 변경)

  • Shim, Jaeruen;Chun, Joong-Chang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.13-18
    • /
    • 2015
  • This study presents the structure design of antenna to have the dual band characteristics in a desired frequency band through the structural modification of an antenna structure. For the experiment, a wideband crossed planar monopole antenna was used. The target frequency band was set to ISM 2.45GHz/5.8GHz. To give the properties, an additional antenna element was added to the crossed planar monopole antenna, which is a main body of the antenna. And then structural adjustment parameter was set to change the length(shape) of the antenna. Various simulations were conducted to find the dual band characteristics in the desired frequency band. The simulations brought forth the antenna bandwidth above the normal values for ISM 2.45GHz/5.8GHz. The structural adjustment parameter introduced in this study for structural modification of an antenna can be useful in developing an antenna featured with dual band(multiband) characteristics.

A Study on Dual Band Characteristics for ISM 2.45GHz/5.8GHz Using Two Crossed Planar Monopole Antenna (두 개의 Crossed Planar 모노폴 안테나에 의한 ISM 2.45GHz/5.8GHz 이중대역 특성 연구)

  • Shim, Jaeruen;Chun, Joong-Chang;Lee, Kwang-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.739-741
    • /
    • 2014
  • We suggested the new compact dual band monopole antenna using two crossed planar monopole antenna. The proposed antenna will be used for the ISM dual band 2.45GHz/5.8GHz. It is necessary to verify its performance through the follow-up development of the proposed antenna for the high-speed wireless actual communications.

  • PDF

A study on branch type Inverted-F structure antenna with dual-band operation (듀얼밴드를 갖는 브랜치타입 인버티드 F구조 안테나에 관한 연구)

  • Park, Seong-Il;Ji, Yu-Kang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.39-45
    • /
    • 2008
  • In this parer a branch type inverted-F structure antenna with dual-band is proposed. The proposed antenna has a size of about $70mm{\times}35mm{\times}0.8mm$ with a total mobile phone PCB for support and patch of about $12mm{\times}8mm{\times}0.8mm$. This antenna is designed to operate of frequency 2.45GHz and 5.8GHz, Bandwidth at each other frequency is satisfied $83MHz{\sim}100MHz$ in frequencies. Also, The designed and fabricated dual-band antenna for 2.45GHz, 5.8GHz have a gain between 2.0dBi and -1.0dBi at all bands.

Disk Sector Antenna fed by CPW for UWB Communications (UWB 통신용 CPW 급전 디스크 섹터 안테나)

  • Lim, Jung-Hyun;Lee, Min-Soo;Yang, Doo-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.303-312
    • /
    • 2009
  • In this paper, we design and fabricate a disk sector antenna fed by CPW fur UWB communications. Also, we insert a rectangular slit on the arc-edge of the disk sector antenna. Then, the antenna has the directivity of E-면. In order to design the antenna, the input impedance is matched with the feed line of $50{\Omega}$ as varying the physical antenna parameters, which are the radius, the flare angle of disk sector, the length of ground, and the length of ground comer near by feed tine. Dimension of the antenna designed for UWB communication is $72mm{\times}26mm$ and bandwidth through computer simulation is $3{\sim}13GHz$. From the measured results, the bandwidth is $1.98{\sim}11GHz$. Return loss and gain of the fabricated antenna are -50.38dB, 1.34dBi at 3.5GHz, -12.27dB, 3.35dBi at 5.5GHz, -23.2dB, 3.8dBi at 8GHz and -16.17dB, 5.2dBi at 10GHz, respectively.

Design of Wideband High Gain Trapezoidal Monopole Antenna using Backside Frequency Selective Surface (후면 주파수 선택 표면을 이용한 광대역 고이득 평면 사다리꼴 모노폴 안테나 설계)

  • Hong, Seungmo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.6
    • /
    • pp.473-478
    • /
    • 2021
  • This paper designed a wideband, high gain planar trapezoidal monopole antenna using backside frequency selective surface (FSS) according to the need for wideband and high gain antenna required in various fields such as rapidly increasing wireless communication, autonomous vehicles, 5G wireless communication and wideband applications. The proposed antenna uses a dual metallic to have a structural difference from the existing FSS. By solving the complexity of the design antenna using genetic algorithms (GA) and high frequency structural simulators (HFSS) simulations, the proposed antenna is not only produce a high efficiency but also presents a wide bandwidth of 3.52 to 5.92 GHz and a gain of 10.5 dBi over the entire bandwidth, with the highest gain of 11.8 dBi at 5.1 GHz. It has been confirmed that the gain increased 8.6 dBi as the 36% impedance bandwidth of 1.8 GHz compared to the existing antenna improved to the 50% impedance bandwidth of 2.4 GHz.

T-shaped Microstrip Monopole Antenna with a Pair of Slits for Dual-Band Operation (슬릿쌍을 이용한 이중 대역 T-형 마이크로스트립 모노폴 안테나)

  • Lee, Jong-Ig;Yeo, Jun-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.759-763
    • /
    • 2011
  • In this paper, a dual-band T-shaped microstrip monopole antenna with a pair of slits for 2.4/5.2/5.8-GHz wireless local area networks (WLANs) is proposed. A pair of T-shaped slits is loaded on a T-shaped monopole antenna fed by microstrip line in order to obtain dual-band operation as well as to reduce the antenna size. It is demonstrated from experimental results that the proposed antenna can cover all the required bands for WLAN. The measured impedance bandwidth for VSWR<2 is about 5.7% (2.37-2.51GHz) in the lower frequency band and about 28.8% (4.76-6.35GHz) in the higher frequency band. The measured peak gains are about 1.33 dBi to 1.66 dBi in the 2.4GHz band, 3.50 dBi to 3.95 dBi in the 5.25GHz band, and 2.06 dBi to 2.34 dBi in the 5.8GHz band.

A CPW-fed Small Monopole Antenna for 5.1~5.8 GHz WLAN (5.1~5.8 GHz 무선랜용 CPW 급전 소형 모노폴 안테나)

  • Choi, In-Tae;Shin, Ho-Sub
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1659-1665
    • /
    • 2019
  • In this paper, a novel design of a compact printed monopole antenna for wireless local area network (WLAN) applications is investigated. The radiator with a patch of different line width and step-shaped ground planes is used to reduce the antenna size. The size of the antenna is 16 × 17 × 1 ㎣ and is fabricated with a photolithography technique. The simulated and measured results agree well. The resonant frequency of the investigated antenna is about 5.2 GHz and can cover an impedance bandwidth of 1 GHz for the measurement result. In addition, we presented the measured radiation pattern, presented the gain and efficiency measured in the required WLAN 5 GHz frequency band (5.15-5.825 GHz), and confirmed that it can be used as a 5 GHz band WLAN antenna. The investigated antenna has a small size, light weight, low cost, omni-directional radiation pattern, high gain, and high efficiency.