• Title/Summary/Keyword: 5.8GHz 안테나

Search Result 291, Processing Time 0.026 seconds

Design of the Elliptic Monopole Antenna for Ultra Wide-Band (Ultra Wide-Band용 타원형 모노폴 안테나 설계)

  • 차상진;이현진;임영석
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.8
    • /
    • pp.125-130
    • /
    • 2004
  • Various antennas have been developed to be used for UWB systems, However, Simultaneously meet omni-directional and low-VSWR requirements, essential for some applications such as UWB channel sounding. In this paper, we propose a novel wide band printed elliptic monopole antenna for UWB(Ultra wide Band). Wideband planar monopole disc antenna have been recently studied. The proposed antenna can cover m frequencies from 3.5GHz to 12GHz. it is determined from 10dB return loss. Antenna radiation pattern is omnidirectional at 3.5GHz - 10GHz. The antenna consists of the printed elliptical monopole disc with microstrip-line feed. Elliptic disc of antenna and ground height operate important to matching. The proposed antenna easy to construct UWB system.

Design and Implementation of 2.4/5 GHz Dual-Band Plate Type Antenna for Access Point of Wireless LAN (2.4/5 GHz 무선 LAN 액세스 포민트용 이중 공진 판형 안테나 설계 및 구현)

  • Lee Won-Kew;Son Ji-Myoung;Han Jun-Hee;Yang Woon-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.5 s.108
    • /
    • pp.401-407
    • /
    • 2006
  • In this paper, we present a small-sized and light weighted dual-band antenna for an access point of 2.4/5 GHz dual-band WLAN(Wireless Local Area Network). The antenna for WLAN should show the characteristic of omni-directional radiation pattern. First, to obtain the omni-directional radiation pattern the proposed dual-band antenna has an orthogonal inverted triangular type element at the center and locates four resonating elements symmetrically around it. Also, for the purpose of easy manufacturing and miniaturization of the antenna, we changed the central element which had the orthogonal inverted triangular type structure into the plate type. Measured $S_{11}$ for the proposed dual-band plate type antenna showed characteristic which was less then -12.8 dB for WLAN frequency bands. Measured results for the maximum gain showed 3.17 dBi at 2.44 GHz, 5.38 dBi at 5.77 GHz with omni-directional radiation pattern. The implemented antennas showed applicable performances for the access point of WLAN.

Compact Broad-band Antenna Using Archimediean Spiral Slot (알키메디안 스파이럴 슬롯을 이용한 소형화된 광대역 안테나)

  • Kim, June-Hyong;Cho, Tae-June;Lee, Hong-Min
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.3
    • /
    • pp.50-56
    • /
    • 2010
  • In this paper, compact broad-band antenna using circular spiral slot and CPW (coplanar waveguide) feed is proposed. The proposed antenna is designed on the same plane of the substrate by using CPW fed structure, archimediean spiral slot structure. So it was achieved both the size of compact antenna and the broad band. A archimediean spiral slot structure is introduced for resonance of medium band operation. The distances of a CPW feeder line and a ground plane are modified for impedance matching and lower/higher band operation. The proposed antenna has a compact size ($8mm\;{\times}\;13mm$) and it is etched on the FR-4 (relative dielectric constant 4.4, thickness 0.8mm) dielectric substrate. The simulated impedance bandwidth (VSWR $\leq$ 2) and maximum gain of the proposed antenna are 5.98GHz (4.1GHz ~ 10.08GHz) and 3.97dBi, respectively. The measured impedance bandwidth (VSWR $\leq$ 2) and maximum gain of the proposed antenna are 6.02GHz (4.48GHz ~ 10.5GHz) and 2.68dBi, respectively. The simulation and measured result shows good impedance matching and radiation pattern over the interesting frequency bands. It can be applied to antenna of broad-band wireless communication system.

Study on the CPW Structure Antenna (CPW 구조 안테나 연구)

  • Park, Yong-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1003-1008
    • /
    • 2017
  • In this paper, we studied the design and fabrication of double T Structure with CPW antenna at around 5 GHz band.. To improve of frequency properties of antenna, Double T Structure with CPW antenna was simulated by HFSS(: High Frequency Structure Simulator). A double T Structure with CPW antenna was designed and fabricated by photolithograph on an FR4 substrate (dielectric constant of 4.4 and thickness of 1.6 mm). The fabricated A double T Structure with CPW antenna showed a center frequency, the minimum return loss and impedance were 5.29GHz, -34dB, and 390MHz, $49.6{\Omega}$ respectively.

Multi-Band Chip Slot Antenna for Mobile Devices (무선 통신 기기에 적합한 다중 대역 칩 슬롯 안테나)

  • Nam, Sung-Soo;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1264-1271
    • /
    • 2009
  • In this paper, the chip slot antenna which is used for mobile devices and designed for multi-band is proposed. The proposed antenna is comprised of a chip antenna(10 mm$\times$20 mm$\times$1.27 mm) and a system circuit board(30 mm$\times$60 mm$\times$0.8 mm). The chip slot antenna is mounted on the system circuit board and the end of F-type strip line which is patterned on the chip antenna is connected by a via with a ground plane of the system circuit board. So, a chip antenna radiates effectively the energy by transition between a microstrip line of the system circuit board and a open slot structure of the chip antenna. In the results of proposed antenna, impedance bandwidth of 3:1 VSWR(-6 dB return loss) is 1.98 GHz(1.61~3.59 GHz) and 0.8 GHz(5.2~6 GHz). So, it can cover multi-band of DCS, PCS, UMTS, WLAN. The proposed antenna can be applied to mobile devices.

Wibro / WiFi dual-band antenna design for wireless broadband communication (무선 광대역 통신을 위한 Wibro/WiFi 이중대역 안테나 설계)

  • Kim, Gyeong-Rok;Kang, Sung-Woon;Hong, Yong-Pyo;Kim, Kab-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.449-452
    • /
    • 2018
  • In this paper, we design a Wibro / WiFi dual band microstrip antenna for wireless broadband communication. The proposed antenna is designed to have the characteristics of FR-4 (er = 4.3), size of $40[mm]{\times}40[mm]$, and usable in 2.31[GHz] and 5.8[GHz] bands of Wibro / WiFi. The simulation is performed by CST Microwave Studio 2014 The simulation result shows that the gain is 2.308[dB] at 2.31[GHz] and 2.985[dB] at 5.8[GHz]. S-parameters were also found to be less than -10[dB] (WSWR2: 1) in the desired frequency band, and a small number of parameters and a compact antenna were designed. It is expected that many users will use the mobile communication antenna for accurate and fast communication for smooth wireless broadband communication.

  • PDF

Design of Triple-Band Planar Monopole Antenna Having a Parasitic Element with Low SAR Using a Reflector (기생 소자를 이용한 3중 대역 모노폴 안테나 SAR 저감 설계)

  • Bong, HanUl;Hussain, Niamat;Jeong, MinJoo;Lee, SeungYup;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.181-189
    • /
    • 2019
  • In this study, a triple-band antenna that can be used in WLAN(Wireless Local Area Network) at 2.4 GHz, 5.8 GHz, and 5G at 3.5 GHz is fabricated. The proposed antenna uses a parasitic element to show the triple band, and the reflector is used at a distance of ${\lambda}/4$ from the antenna to reduce the Specific Absorption Rate(SAR). Its dimensions are $100{\times}75{\times}1.6mm^3$ and each parameter value is optimized for better performance and a lower SAR value. As a result, we obtained a bandwidth of 540 MHz(2.02~2.56 GHz), 390 MHz(3.39~3.78 GHz), and 1,210 MHz(5.56~6.77 GHz) based on the reflection loss factor of -10 dB. In addition, the SAR values of the antenna with reflector are observed to reduce below the SAR value of international standard.

Design of UWB Hexagon Patch Antenna with WLAN Notch Band Characteristic (WLAN 노치 대역 특성을 갖는 UWB 육각형 패치 안테나)

  • Kim, Young-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.286-290
    • /
    • 2017
  • In this paper, we have proposed a hexagonal patch UWB antenna with a band notch characteristic where the notch band of 5.15 ~ 5.85 GHz band of WLAN was induced by inserting a circular slit in the patch. The impedance bandwidth of the proposed antenna meet the band width criteria of UWB communication system where is mentioned as frequencies range form 3.1 ~ 11.8 GHz. The characteristic band at 5.2 ~ 5.8 GHz notch band was observed. The radiation pattern of the antenna shows a directinal radiation pattern at $0^{\circ}$ and $180^{\circ}$ in XZ-plane and YZ-plane is an omni-directional pattern, respectively. In addition, it is observed that increase in frequency results in increases of the antenna gain whereas the notch band section is decreased. The proposed antenna was designed TRF-45 substrate with thickness of 1.62 mm, a loss tangent of 0.0035, a relative permittivity of 4.5 and designed were used Ansys Inc. HFSS.

Design of Active Antenna Diplexers Using UWB Planar Monopole Antennas (초광대역 평면형 모노폴 안테나를 이용한 능동 안테나 다이플렉서의 설계)

  • Kim, Joon-Il;Lee, Won-Taek;Chang, Jin-Woo;Jee, Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.9
    • /
    • pp.1098-1106
    • /
    • 2007
  • This paper presents active antenna diplexers implemented into an ultra-wideband CPW(Coplanar Waveguide) fed monopole antennas. The proposed active antenna diplexer is designed to direct interconnect the output port of a wideband antenna to the input port of two active(HEMT) devices, where the impedance matching conditions of the proposed active integrated antenna are optimized by adjusting CPW(Coplanar Waveguide) feed line to be the length of 1/20 $\lambda_0$(@5.8 GHz) in planar type wideband antenna. The measured bandwidth of the active integrated antenna shows the range from 2.0 GHz to 3.1 GHz and from 5.25 GHz to 5.9 GHz. The measured peak gains are 17.0 dB at 2.4 GHz and 15.0 dB at 5.5 GHz.

Study on the MIMO Channel Characteristics Considering Urban Canyon at the Microwave Bands (도심 협곡 환경에서의 마이크로파 대역 MIMO 채널 특성에 관한 연구)

  • Lim, Jae-Woo;Kwon, Se-Woong;Moon, Hyun-Wook;Park, Yoon-Hyun;Yoon, Young-Joong;Yook, Jong-Gwan;Jeong, Jin-Soub;Kim, Jong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.1065-1071
    • /
    • 2007
  • In this paper, in order to research spectrum usage efficiency in urban canyon environment at the microwave band, measurement and channel capacity analysis of multi-antenna technology is described. The measurement data obtained from 3 - 4 stories building area used and the propagation characteristics at the 3.7 and 8GHz band are analysed and compared. In case of $2{\times}2$ MIMO, channel capacities of 3.7 and 8 GHz band are calculated to 9.1 bps/Hz and S bps/Hz and in case of $4{\times}4$ MIMO, 21 bps/Hz and 12.5 bps/Hz respectively. Considering the coverage, SNR and channel capacity in urban environment, MIMO propagation characteristics of 3.7 GHz are more predominate than those of 8 GHz.