• Title/Summary/Keyword: 5.8 GHz

Search Result 1,190, Processing Time 0.023 seconds

Design and implementation of planar UWB antenna with dual band rejection characteristics

  • Woon Geun Yang;Tae Hyeon Nam
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.109-115
    • /
    • 2023
  • In this paper, we design and implement an Ultra-Wide Band (UWB, 3.1~10.6 GHz) antenna with 5G mobile communication (3.42~3.70 GHz) and Wireless Local Area Network (WLAN, 5.15~5.825 GHz) bands rejection characteristics. The proposed antenna consists of a planar radiation patch with two slots. The upper slot contributes to reject 5G mobile communication band and the lower slot contributes to reject WLAN band. The Voltage Standing Wave Ratio (VSWR) values of the proposed antenna show good performances in whole UWB band except for rejection bands based on VSWR 2.0. The proposed UWB antenna was simulated using High Frequency Struture Simulator (HFSS) by Ansoft. The simulated antenna showed dual rejection bands of 3.31~3.92 GHz and 5.04~5.90 GHz in UWB band, and measured antenna showed dual rejection bands of 3.35~3.97 GHz and 5.06~5.97 GHz. The largest VSWR values measured at each rejection band are 13.60 at 3.64 GHz and 10.25 at 5.52 GHz. The measured maximum gain is 5.31 dBi at 10.00 GHz. The lowest gains for the measured antenna at rejection bands are -8.73 dBi at 3.70 GHz and -4.36 dBi at 5.56 GHz.

Design and Fabrication of Dualband PIFA for size reduction (사이즈 감소를 위한 이중대역 PIFA 안테나 설계 및 제작)

  • Lim Dong-Cheol;Park Hyo-Dal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9A
    • /
    • pp.900-905
    • /
    • 2006
  • In this paper, PIFA antenna for $2.40{\sim}2.482GHz\;and\;5.75{\sim}5.85GHz$ is designed, fabricated, and measured. The prototype consist of hair-pin and short-pin. To obtain suitable bandwidth, the form layer is inserted between ground plane and substrate. Important parameters in the design are hair-pin length, width, position, air-gap height, and feed point position. From these parameters optimized, a PIFA antenna is fabricated and measured. The measured results of the antenna are obtained as follows results. The resonant frequency of the fabrication PIFA antenna is 2.37GHz and 5.86GHz bandwidth for approximately 90MHz with 350MHz(VSWR<2.0) and the gain is $1.91{\sim}4.37dBi$. H-plan and E-plan at 2.4GHz and 5.8GHz are shown as $52.83^{\circ},\;85.90^{\circ}\;and\;68.68^{\circ},\;52.143^{\circ}$ respectively.

Design and Implementation of Active Diplexer Using Asymmetrical Coupled Microstrip Lines (비대칭 결합 마이크로스트립 선로를 이용한 능동 다이플렉서의 구현)

  • 윤현보;문승찬;최원영
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.4 no.3
    • /
    • pp.11-17
    • /
    • 1993
  • An active diplexer can be realized by using a MESFET and 2-sections of asymmetrical coupled bandpass filter, where the admittance inverter parameters in equivalent circuit of asym- metrical coupled microstrip lines are given as a function of an fundamental design parameter of a bandpass filter. An experimental active diplexer was designed over 22 and 18 percent bandwidth centered at 9 GHz and 11 GHz respectively, and the design data was optimized by Super-Compact. The gain performance was $6.2\pm0.3$dB in each band of 8.3~9.6 GHz and 10.3~11.8 GHz The measured bandwidth of the active diplexer was closely matched to design data but measured gain was slightly lower (1.5 dB) than the designed value.

  • PDF

A study on Folded Monopole Antenna for Wireless HDMI Dongle Applications (무선 HDMI 동글장치를 위한 폴디드 모노폴 안테나에 관한 연구)

  • Lee, Yun-Min;Lee, Jae-Choon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.211-215
    • /
    • 2015
  • In this paper, we propose a internal antenna for wirless HDMI dongle device using the folded monopole structure. The proposed antenna is for 2.4GHz and 5.8GHz. The antenna optimized for parameters length, gap, width, and radius of semicircular of monopole antenna using the 'F' structure. To confirm the characteristics of the antenna parameters, HFSS from ANSYS Inc. was used for the analysis. We used an FR4 dielectric substrate with a dielectric constant of 4.4. The HDMI dongle size of the proposed antenna is $45{\times}20{\times}1mm$, and the size of the antenna area is $5{\times}20mm$. There is a value of return loss less then -10dB in 2.4GHz and 5.8GHz, band and the maximum antenna gain is -4.13dBi. The result proved the possibility of the practical using 'F' structure that came frin comparing and analyzing the measured and simulated data of the antenna.

Compact Triple-Band Monopole Antenna for WLAN/WiMAX-Band USB Dongle Applications

  • Shi, Ya Wei;Xiong, Ling;Chen, Meng Gang
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.21-25
    • /
    • 2015
  • A miniaturized triple-band antenna suitable for wireless USB dongle applications is proposed and investigated in this paper. The presented antenna, simply consisting of a circular-arc-shaped stub, an L-shaped stub, a microstrip feed line, and a rectangular ground plane has a compact size of $16mm{\times}38.5mm$ and is capable of generating three separate resonant modes with very good impedance matching. The measurement results show that the antenna has several impedance bandwidths for S11 ${\leq}$ -10 dB of 260 MHz (2.24 GHz to 2.5 GHz), 320 MHz (3.4 GHz to 3.72 GHz), and 990 MHz (5.1 GHz to 6.09 GHz), which can be applied to both 2.4/5.2/5.8 GHz WLAN bands and 3.5/5.5 GHz WiMAX bands. Moreover, nearly-omni-directional radiation patterns and stable gain across the operating bands can be obtained.

A 800MHz~5.8GHz Wideband CMOS Low-Noise Amplifier (800MHz~5.8GHz 광대역 CMOS 저잡음 증폭기 설계)

  • Kim, Hye-Won;Tak, Ji-Young;Lee, Jin-Ju;Shin, Ji-Hye;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.45-51
    • /
    • 2011
  • This paper presents a wideband low-noise amplifier (LNA) covering 800MHz~5.8GHz for various wireless communication standards by utilizing in a 0.13um CMOS technology. Particularly, the LNA consists of two stages to improve the low-noise characteristics, that is, a cascode input stage and an output buffer with noise cancellation technique. Also, a feedback resistor is exploited to help achieve wideband impedance matching and wide bandwidth. Measure results demonstrate the bandwidth of 811MHz~5.8GHz, the maximum gain of 11.7dB within the bandwidth, the noise figure of 2.58~5.11dB. The chip occupies the area of $0.7{\times}0.9mm^2$, including pads. DC measurements reveal the power consumption of 12mW from a single 1.2V supply.

Design and Implementation of Dual Wideband Dipole Type Antenna for the Reception of S-DMB and 2.4/5 GHz WLAN Signals (S-DMB와 2.4/5 GHz WLAN 신호 수신을 위한 이중 광대역 다이폴형 안테나의 설계 및 구현)

  • Kim, Sung-Min;Yang, Woon-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.11 s.114
    • /
    • pp.1021-1029
    • /
    • 2006
  • In this paper, we designed and implemented a dual wideband dipole type antenna for the reception of S-DMB (Satellite Digital Multimedia Broadcasting) and 2.4/5 GHz WLAN(Wireless Local Area Network) signals. The proposed antenna based on conventional monopole type dual band antenna was implemented as planar wideband dipole type antenna with the volume of $8{\times}33.8{\times}1.68mm^3$. The proposed antenna is printed type on FR4 substrate of 1.6 mm thick and composed of a dipole type antenna for low frequency band and two symmetric structured resonance elements for high frequency band. We confirmed antenna area with dense surface current for each frequency band with simulation. By varying the length of the antenna area with dense surface current, we could vary resonance frequency of each frequency band separately. Impedance bandwidths$(VSWR{\leq}2)$ are 362 MHz(14.23 %) for 2 GHz band and 1188 MHz(22.13, %) for 5 GHz band which show wideband characteristic. Measured maximum gains were 4.33 dBi for 2 GHz band and 5.48 dBi for 5 GHz band which showed improved performance. And the implemented antenna has a good omni-directional radiation pattern characteristic.

Design and Fabrication of Parallel Coupled Line Band Pass Filter for 5.8GHz ISM Band (5.8GHz ISM밴드용 평행 결합선로 대역통과 여파기의 설계)

  • Jang, In-Seok;Son, Tae-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.381-383
    • /
    • 2006
  • 본 논문에서는 5.8Ghz ISM대역 평행 결합선로 대역통과 여파기를 설계 제작하였다. 긴본적인 설계는 저역통과 여파기에서 대역통과 여파기로 변환한 후, 직 병렬 공진기를 이용한 설계와 J-인버터를 이용해 평행 결합선로 대역통과 여파기를 구현하였다. 2개의 공진 주파수를 실제로 구현하기 어렵기 때문에 하나의 공진기만을 사용하기 위해 인버터를 사용하였다. 또한 실제적인 마이크로스트립 라인의 layout크기를 결정하기 위해 우수 기수 모드 임피던스를 해석하고 근사식을 통해 스트립라인의 치수를 결정하였다. 이런 과정을 토대로 5.8GHz ISM밴드용 평행 결합선로 대역통과 여파기를 설계, 제작하였다.

  • PDF

Design and Fabrication of a Receiver Module for 5.8GHz Microwave Wireless Power Transmission (5.8GHz 마이크로파 무선전력전송을 위한 수신기 모듈 설계 및 구현)

  • Lee, Seong Hun;Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.16-21
    • /
    • 2016
  • In this paper, we have designed and fabricated a receiver module for 5.8GHz Microwave Wireless Power Transmission. The receiver module was composed of an antenna, BPF (Band Pass Filter) and RF-DC converter. The antenna was designed to RHCP (Right Hand Circular Polarization). And we used ${\lambda}g/2$ open-circuited stubs for the BPF. In addition, the RF-DC converter used the tripler voltage circuit for voltage multipliers. The integrated receiver RF module for 5.8GHz Microwave Wireless Power Transmission has been designed and fabricated. The voltage was measured to the distance of 50cm.

Compact 4-bit Chipless RFID Tag Using Modified ELC Resonator and Multiple Slot Resonators (변형된 ELC 공진기와 다중 슬롯 공진기를 이용한 소형 4-비트 Chipless RFID 태그 )

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.516-521
    • /
    • 2022
  • In this paper, a compact 4-bit chipless RFID(radio frequency identification) tag using a modified ELC(electric field-coupled inductive-capacitive) resonator and multiple slot resonators is proposed. The modified ELC resonator uses an interdigital-capacitor structure in the conventional ELC resonator to lower the resonance peak frequency of the RCS. The multiple slot resonators are designed by etching three slots with different lengths into an inverted U-shaped conductor. The resonant peak frequency of the RCS for the modified ELC resonator is 3.216 GHz, whereas those of the multiple slot resonators are set at 4.122 GHz, 4.64 GHz, and 5.304 GHz, respectively. The proposed compact four-bit tag is fabricated on an RF-301 substrate with dimensions of 50 mm×20 mm and a thickness of 0.8 mm. Experiment results show that the resonant peak frequencies of the fabricated four-bit chipless RFID tag are 3.285 GHz, 4.09 GHz, 4.63 GHz, and 5.31 GHz, respectively, which is similar to the simulation results with errors in the range between 0.78% and 2.16%.