• Title/Summary/Keyword: 5-triphosphate receptor

Search Result 46, Processing Time 0.024 seconds

Inhibitory effects of total saponin from Korean Red Ginseng on [Ca2+]i mobilization through phosphorylation of cyclic adenosine monophosphate-dependent protein kinase catalytic subunit and inositol 1,4,5-trisphosphate receptor type I in human platelets

  • Shin, Jung-Hae;Kwon, Hyuk-Woo;Cho, Hyun-Jeong;Rhee, Man Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.354-364
    • /
    • 2015
  • Background: Intracellular $Ca^{2+}$($[Ca^{2+}]_i$) is a platelet aggregation-inducing molecule. Therefore, understanding the inhibitory mechanism of $[Ca^{2+}]_i$mobilization is very important to evaluate the antiplatelet effect of a substance. This study was carried out to understand the $Ca^{2+}$-antagonistic effect of total saponin from Korean Red Ginseng (KRG-TS). Methods: We investigated the $Ca^{2+}$-antagonistic effect of KRG-TS on cyclic nucleotides-associated phosphorylation of inositol 1,4,5-trisphosphate receptor type I ($IP_3RI$) and cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) in thrombin (0.05 U/mL)-stimulated human platelet aggregation. Results: The inhibition of $[Ca^{2+}]_i$ mobilization by KRG-TS was increased by a PKA inhibitor (Rp-8-BrcAMPS), which was more stronger than the inhibition by a cyclic guanosine monophosphate (cGMP)- dependent protein kinase (PKG) inhibitor (Rp-8-Br-cGMPS). In addition, Rp-8-Br-cAMPS inhibited phosphorylation of PKA catalytic subunit (PKAc) ($Thr^{197}$) by KRG-TS. The phosphorylation of $IP_3RI$ ($Ser^{1756}$) by KRG-TS was very strongly inhibited by Rp-8-Br-cAMPS compared with that by Rp-8-BrcGMPS. These results suggest that the inhibitory effect of $[Ca^{2+}]_i$ mobilization by KRG-TS is more strongly dependent on a cAMP/PKA pathway than a cGMP/PKG pathway. KRG-TS also inhibited the release of adenosine triphosphate and serotonin. In addition, only G-Rg3 of protopanaxadiol in KRG-TS inhibited thrombin-induced platelet aggregation. Conclusion: These results strongly indicate that KRG-TS is a potent beneficial compound that inhibits $[Ca^{2+}]_i$ mobilization in thrombin-platelet interactions, which may result in the prevention of platelet aggregation-mediated thrombotic disease.

ATP and Purinergic Receptor Agonists Stimulate the Mitogen-Activated Protein Kinase Pathway and DNA Synthesis in Mouse Mammary Epithelial Cells

  • Yuh In-Sub
    • Reproductive and Developmental Biology
    • /
    • v.28 no.4
    • /
    • pp.211-219
    • /
    • 2004
  • The effects of adenosine 5'-triphosphate (ATP) and ATP analogs, P/sub 2y/ purinoceptor agonists, on growth of normal mouse mammary epithelial cells (NMuMG) were examined. Cells were plated onto 24 well plates in DMEM supplemented with 10 % fetal calf serum. After serum starvation for 24 hours, ATP, P/sub 2y/ purinoceptor agonists (AdoPP[NH]P, ATP-α-S, ATP-γ-S, β, γ-me-ATP and 2me-S-ATP), P/sub 2u/ purinoceptor agonist (UTP) and P/sub 2y/ purinoceptor antagonists (Reactive Blue 2, more selective to P/sub 2y/ receptor than PPADS; PPADS) were added. DNA synthesis was estimated as incorporation of 3H-thymidine into DNA (1 hour pulse with 1 μ Ci/ml, 18~19 hours after treatment). ATP, Adopp[NH]P, ATP-α-S or ATP-γ-S, significantly increased DNA synthesis at 1, 10 and 100 μM concentrations with dose-dependency (P<0.05), and the maximum responses of ATP and ATP analogs were shown at 100 μM concentration (P<0.05). The potency order of DNA synthesis was ATP≥ATP- γ -S>Adopp [NH]P>ATP-α-S. β, γ -me-ATP, 2me-S-ATP and UTP did not increase DNA synthesis. In autoradiographic analysis of percentage of S-phase cells, similar results were observed to those of DNA synthesis. Addition of 1, 10 or 100 μM Reactive Blue 2 or PPADS significantly decreased ATP (100 μM)-induced DNA synthesis, however, PPADS was less effective than Reactive Blue 2. In Elvax 40P implant experiment, ATP directly stimulated mammary endbud growth in situ suggesting the physiological regulator of ATP in mammary growth. ATP 100 μM rapidly increased MAPK activity, reaching a maximum at 5 min and then gradually decreasing to the base level in 30 min. ATP analogs, Adopp[NH]P and ATP-γ-S also increased MAPK activity, however, β, γ-me-ATP and 2me-S-ATP did not. The inhibitor of the upstream MAPK kinase (MEK), PD 98059 (25 μM), effectively reduced ATP (100 μM) or EGF(10 ng/ml, as positive control)-induced MAPK activity and DNA synthesis (P<0.05). These results indicate that ATP-induced DNA synthesis was prevented from the direct inhibition of MAPK kinase pathway. Overall results support the hypothesis that the stimulatory effects of normal mouse mammary epithelial growth by addition of ATP or ATP analogs are mediated through mammary tissue specific P/sub 2y/ purinoceptor subtype, and MAPK activation is necessary for the ATP-induced cell growth.

Mechanisms of tert-Buthyl Hydroperoxide-induced Membrane Depolarization in Rat Spinal Substantia Gelatinosa Neurons

  • Lim, Seong-Jun;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • v.33 no.3
    • /
    • pp.117-123
    • /
    • 2008
  • Reactive oxygen species (ROS) are toxic agents that may be involved in various neurodegenerative diseases. Recent studies indicate that ROS can act as modulators of neuronal activity, and are critically involved in persistent pain primarily through spinal mechanisms. In the present study, whole cell patch clamp recordings were carried out to investigate the effects of tert-buthyl hydroperoxide (t-BuOOH), an ROS, on neuronal excitability and the mechanisms underlying changes of membrane excitability. In current clamp condition, application of t-BuOOH caused a reversible membrane depolarization and firing activity in substantia gelatinosa (SG) neurons. When slices were pretreated with phenyl-N-tert-buthylnitrone (PBN) and ascorbate, ROS scavengers, t-BuOOH failed to induce membrane depolarization. However, isoascorbate did not prevent t-BuOOH-induced depolarization, suggesting that the site of ROS action is intracellular. The t-BuOOH-induced depolarization was not blocked by pretreatment with dithiothreitol (DTT), a sulfhydryl-reducing agent. The membrane-impermeant thiol oxidant 5,5-dithiobis 2-nitrobenzoic acid (DTNB) failed to induce membrane depolarization, suggesting that the changes of neuronal excitability by t-BuOOH are not caused by the modification of extrathiol group. The t-BuOOH-induced depolarization was suppressed by the phospholipase C (PLC) blocker U-73122 and inositol triphosphate ($IP_3$) receptor antagonist 2-aminoethoxydiphenylbolate (APB), and after depletion of intracellular $Ca^{2+}$ pool by thapsigargin. These data suggest that ROS generated by peripheral nerve injury can induce central sensitization in spinal cord, and t-BuOOH-induced depolarization may be regulated by intracellular $Ca^{2+}$ store mainly via $PLC-IP_3$ pathway.

Tanshinone I, an Active Ingredient of Salvia miltiorrhiza, Inhibits Differentiation of 3T3-L1 Preadipocytes and Lipid Accumulation in Zebrafish

  • Kwon, Hyo-Shin;Jang, Byeong-Churl
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.2
    • /
    • pp.109-121
    • /
    • 2020
  • Objectives: Tanshinone I is a bioactive constituent in Salvia miltiorrhiza. At present, the anti-obesity effect and mechanism of tanshinone I are not fully understood. Here we investigated the effect of tanshinone I on lipid accumulation in 3T3-L1 preadipocytes and zebrafish. Methods: Lipid accumulation and triglyceride (TG) content in 3T3-L1 cells were determined by Oil Red O staining and AdipoRed assay, respectively. The expression and phosphorylation levels of adipogenic/lipogenic proteins in 3T3-L1 cells were evaluated by Western blotting. The messenger RNA (mRNA) expression levels of adipogenic/lipogenic markers and leptin in 3T3-L1 cells were measured by reverse transcription polymerase chain reaction (RT-PCR). Lipid accumulation in zebrafish was assessed by LipidGreen2 staining. Results: Tanshinone I at 5 μM largely blocked lipid accumulation and reduced TG content in differentiating 3T3-L1 cells. Furthermore, tanshinone I decreased the expression of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), and perilipin A but also the phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in differentiating 3T3-L1 cells. In addition, tanshinone I increased the phosphorylation of adenosine 3',5'-cyclic monophosphate (cAMP)-activated protein kinase (AMPK) while decreased the intracellular adenosine triphosphate (ATP) content with no change in the phosphorylation and expression of liver kinase-B1 in differentiating 3T3-L1 cells. Importantly, tanshinone I also reduced the extent of lipid deposit formation in developing zebrafish. Conclusions: These findings demonstrate that tanshinone I has strong anti-adipogenic effects on 3T3-L1 cells and reduces adiposity in zebrafish, and these anti-adipogenic effect in 3T3-L1 cells are mediated through control of C/EBP-α, PPAR-γ, STAT-3, FAS, ACC, perilipin A, and AMPK.

Distinct Cellular Calcium Metabolism in Radiation-sensitive RKO Human Colorectal Cancer Cells

  • Kim, Yun Tai;Jo, Soo Shin;Park, Young Jun;Lee, Myung Za;Suh, Chang Kook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.509-516
    • /
    • 2014
  • Radiation therapy for variety of human solid tumors utilizes mechanism of cell death after DNA damage caused by radiation. In response to DNA damage, cytochrome c was released from mitochondria by activation of pro-apoptotic Bcl-2 family proteins, and then elicits massive $Ca^{2+}$ release from the ER that lead to cell death. It was also suggested that irradiation may cause the deregulation of $Ca^{2+}$ homeostasis and trigger programmed cell death and regulate death specific enzymes. Thus, in this study, we investigated how cellular $Ca^{2+}$ metabolism in RKO cells, in comparison to radiation-resistant A549 cells, was altered by gamma (${\gamma}$)-irradiation. In irradiated RKO cells, $Ca^{2+}$ influx via activation of NCX reverse mode was enhanced and a decline of $[Ca^{2+}]_i$ via forward mode was accelerated. The amount of $Ca^{2+}$ released from the ER in RKO cells by the activation of $IP_3$ receptor was also enhanced by irradiation. An increase in $[Ca^{2+}]_i$ via SOCI was enhanced in irradiated RKO cells, while that in A549 cells was depressed. These results suggest that ${\gamma}$-irradiation elicits enhancement of cellular $Ca^{2+}$ metabolism in radiation-sensitive RKO cells yielding programmed cell death.

Homer2 regulates amylase secretion via physiological calcium oscillations in mouse parotid gland acinar cells

  • Kang, Namju;Kang, Jung Yun;Shin, Dong Min;Yang, Yu-Mi
    • International Journal of Oral Biology
    • /
    • v.45 no.2
    • /
    • pp.58-63
    • /
    • 2020
  • The salivary glands secrete saliva, which plays a role in the maintenance of a healthy oral environment. Under physiological conditions, saliva secretion within the acinar cells of the gland is regulated by stimulation of specific calcium (Ca2+) signaling mechanisms such as increases in the intracellular Ca2+ concentration ([Ca2+]i) via storeoperated Ca2+ entry, which involves components such as Orai1, transient receptor potential (TRP) canonical 1, stromal interaction molecules, and inositol 1,4,5-triphosphate (IP3) receptors (IP3Rs). Homer proteins are scaffold proteins that bind to G protein-coupled receptors, IP3Rs, ryanodine receptors, and TRP channels. However, their exact role in Ca2+ signaling in the salivary glands remains unknown. In the present study, we investigated the role of Homer2 in Ca2+ signaling and saliva secretion in parotid gland acinar cells under physiological conditions. Deletion of Homer2 (Homer2-/-) markedly decreased the amplitude of [Ca2+]i oscillations via the stimulation of carbachol, which is physiologically concentrated in parotid acinar cells, whereas the frequency of [Ca2+]i oscillations showed no difference between wild-type and Homer2-/- mice. Homer2-/- mice also showed a significant decrease in amylase release by carbachol in the parotid gland in a dose-dependent manner. These results suggest that Homer2 plays a critical role in maintaining [Ca2+]i concentration and secretion of saliva in mouse parotid gland acinar cells.

Control of $Ca^{2+}$- Influx by $Ca^{2+}$/Calmodulin Dependent Protein Kinase II in the Activation of Mouse Eggs

  • Yoon, Sook-Young;Kang, Da-Won;Bae, In-Ha
    • Development and Reproduction
    • /
    • v.15 no.1
    • /
    • pp.31-39
    • /
    • 2011
  • Change in intracellular $Ca^{2+}$-concentration ($[Ca^{2+}]_i$) is an essential event for egg activation and further development. $Ca^{2+}$ ion is originated from intracellular $Ca^{2+}$-store via inositol 1,4,5-triphosphate receptor and/or $Ca^{2+}$ influx via $Ca^{2+}$ channel. This study was performed to investigate whether changes in $Ca^{2+}$/calmodulin dependent protein kinase II (CaM KII) activity affect $Ca^{2+}$ influx during artificial egg activation with ethanol using $Ca^{2+}$ monitoring system and whole-cell patch clamp technique. Under $Ca^{2+}$ ion-omitted condition, $Ca^{2+}$-oscillation was stopped within 30 min post microinjection of porcine sperm factor, and ethanol-induced $Ca^{2+}$ increase was reduced. To investigate the role of CaM KII known as an integrator of $Ca^{2+}$- oscillation during mammalian egg fertilization, CaM KII activity was tested with a specific inhibitor KN-93. In the eggs treated with KN-93, ethanol failed to induce egg activation. In addition, KN-93 inhibited inward $Ca^{2+}$ current ($I_{Ca}$) in a time-dependent manner in whole-cell configuration. Immunostaining data showed that the voltage-dependent $Ca^{2+}$ channels were distributed along the plasma membrane of mouse egg and 2-cell embryo. From these results, we suggest that $Ca^{2+}$ influx during fertilization might be controlled by CaM KII activity.

In vitro Evaluation of Anti-Human Immunodeficiency Virus Activity of Nucleoside Derivatives and Studies on Their Mode of Action (핵산유도체들의 항 Human Immunodeficiency Virus in vitro 약효평가와 작용기전연구)

  • Lee, Chong-Kyo;Kim, Dong-Ki;Kim, Jee-Hyun;Kim, Hae-Soo;Pi, Mi-Kyoung;Park, Jong-Beak;Kim, Baek
    • The Journal of Korean Society of Virology
    • /
    • v.27 no.1
    • /
    • pp.69-75
    • /
    • 1997
  • To evaluate in vitro anti-HIV efficacies of nucleoside derivatives, MT-4 cell line was infected with HIV-1 and HIV-2 respectively and treated with various compounds and the formerly approved drugs such as AZT, d4T, ddC and ddI. CPE method was used to evaluate their antiviral activity. Most dideoxynucleosides, AZT, d4T, ddC and ddI, showed anti-HIV activities against both viruses but no other compounds including anti-herpesvirus drugs did any. Further experiments were carried out to study their inhibitory mechanism of viral adsorption. The results showed no inhibition of syncytium formation due to an interaction between the gp120 expressed in HIV -infected cell surface and CD4 receptor on the uninfected cell surface in the presence of AZT. AZT showed no activity up to $100\;{\mu}g/ml$. Inhibition of reverse transcriptase (RT) in the presence of AZT-triphosphate was tested by using RT expressed in E. coli and purified and its $IC_{50}$ was 4.5 nM.

  • PDF

Raloxifene Induces Autophagy-Dependent Cell Death in Breast Cancer Cells via the Activation of AMP-Activated Protein Kinase

  • Kim, Dong Eun;Kim, Yunha;Cho, Dong-Hyung;Jeong, Seong-Yun;Kim, Sung-Bae;Suh, Nayoung;Lee, Jung Shin;Choi, Eun Kyung;Koh, Jae-Young;Hwang, Jung Jin;Kim, Choung-Soo
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.138-144
    • /
    • 2015
  • Raloxifene is a selective estrogen receptor modulator (SERM) that binds to the estrogen receptor (ER), and exhibits potent anti-tumor and autophagy-inducing effects in breast cancer cells. However, the mechanism of raloxifene-induced cell death and autophagy is not well-established. So, we analyzed mechanism underlying death and autophagy induced by raloxifene in MCF-7 breast cancer cells. Treatment with raloxifene significantly induced death in MCF-7 cells. Raloxifene accumulated GFP-LC3 puncta and increased the level of autophagic marker proteins, such as LC3-II, BECN1, and ATG12-ATG5 conjugates, indicating activated autophagy. Raloxifene also increased autophagic flux indicators, the cleavage of GFP from GFP-LC3 and only red fluorescence-positive puncta in mRFP-GFP-LC3-expressing cells. An autophagy inhibitor, 3-methyladenine (3-MA), suppressed the level of LC3-II and blocked the formation of GFP-LC3 puncta. Moreover, siRNA targeting BECN1 markedly reversed cell death and the level of LC3-II increased by raloxifene. Besides, raloxifene-induced cell death was not related to cleavage of caspases-7, -9, and PARP. These results indicate that raloxifene activates autophagy-dependent cell death but not apoptosis. Interestingly, raloxifene decreased the level of intracellular adenosine triphosphate (ATP) and activated the AMPK/ULK1 pathway. However it was not suppressed the AKT/mTOR pathway. Addition of ATP decreased the phosphorylation of AMPK as well as the accumulation of LC3-II, finally attenuating raloxifene-induced cell death. Our current study demonstrates that raloxifene induces autophagy via the activation of AMPK by sensing decreases in ATP, and that the overactivation of autophagy promotes cell death and thereby mediates the anti-cancer effects of raloxifene in breast cancer cells.

Inverse Agonists at $A_1$ Adenosine Receptors in Rat Cerebral Cortex (흰쥐의 뇌의$A_1$ 아데노신 수용체에 작용하는 역효현제에 관한 연구)

  • Park, Kyung-Sun;Yang, Wan-Suk;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.23-29
    • /
    • 1996
  • According to the traditional receptor model, competitive antagonists share with agonists the ability to bind to a common site on receptors, but they are different from agonist in that they cannot trigger the biological response-i.e., they lack intrinsic efficacy. Recent findings extend the model by indicating that not all antagonists display an intrinsic efficacy of zero but that some display 'inverse agonism'. In the present study we studied the inverse agonism at $A_1$ adenosine receptors in membranes prepared from rat cerebral cortex. Eight commercially available $A_1$ adenosine receptor antagonists (CGS-15943, ADPX, CPT, DPCPX, DPX, N-0840, PACPX and 8-PT) were screened for inverse agonism by measuring the extent of $[^{35}S]guanosine-5'-({\gamma}-thio)$ triphosphate $([^{35}S]GTP_{\gamma}S)$ binding to G proteins. The agonist-induced stimulation of $[^{35}S]GTP_{\gamma}S$ bindings was completely blocked in the presence of $A_1$ adenosine receptor antagonists. Under optimal conditions, two types of antagonists could be distinguished. Seven antagonists including DPCPX decreased the basal $[^{35}S]GTP_{\gamma}S$ binding in the absence of agonist, displaying inverse agonist activity. One (CGS-15943) had no effect on the basal bindings. N-ethylmaleimide treatment reduced the basal bindings as well as agonist-mediated stimulation of $[^{35}S]GTP_{\gamma}S$ bindings, indicating that a substantial amount of this binding reflects an activated state of the C proteins. In good agreement with these findings, 0.1 mM GTP decreased the apparent affinity of the receptors for the agonist PIA, increased that for DPCPX, and had no effect on that for CGS-15943.

  • PDF