• Title/Summary/Keyword: 5-hydroxytryptamine

Search Result 148, Processing Time 0.025 seconds

Effects of Serotonin on the Induction of Long-term Depression in the Rat Visual Cortex

  • Jang, Hyun-Jong;Cho, Kwang-Hyun;Park, Sung-Won;Kim, Myung-Jun;Yoon, Shin-Hee;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.337-343
    • /
    • 2010
  • Long-term potentiation (LTP) and long-term depression (LTD) have both been studied as mechanisms of ocular dominance plasticity in the rat visual cortex. In a previous study, we suggested that a developmental increase in serotonin [5-hydroxytryptamine (5-HT)] might be involved in the decline of LTP, since 5-HT inhibited its induction. In the present study, to further understand the role of 5-HT in a developmental decrease in plasticity, we investigated the effect of 5-HT on the induction of LTD in the pathway from layer 4 to layer 2/3. LTD was inhibited by 5-HT ($10{\mu}M$) in 5-week-old rats. The inhibitory effect was mediated by activation of 5-$HT_2$ receptors. Since 5-HT also regulates the development of visual cortical circuits, we also investigated the role of 5-HT on the development of inhibition. The development of inhibition was retarded by chronic (2 weeks) depletion of endogenous 5-HT in 5-week-old rats, in which LTD was reinstated. These results suggest that 5-HT regulates the induction of LTD directly via activation of 5-$HT_2$ receptors and indirectly by regulating cortical development. Thus, the present study provides significant insight into the roles of 5-HT on the development of visual cortical circuits and on the age-dependent decline of long-term synaptic plasticity.

Serotonin Synthesis and Metabolism in Dissociated Cultures of Fetal Rat Brainstem (흰쥐 태아 뇌간의 일차 세포배양에서 Serotonin의 합성 및 대사에 대한 연구)

  • Kim, Yung-Hi;Song, Dong-Keun;Wie, Myung-Bok;Song, Joon-Ho;Choi, Yeun-Sik
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 1990
  • We established an in vitro system of central serotonergic neurons by culturing dissociated rat embryonic (El4) brainstem cells to 14 days in vitro and monitored the serotonergic neuronal growth by measuring 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) contents in the cells with hish performance liquid chromatography with electrochemical detection (HPLC-EC). We studied also tile effects of various drugs on the contents of 5-HT and 5-HIAA, confirming in vivo reports. The 5-HT content (13 ng/mg protein) and 5-HT turnover rate (17 pmol/mg protein/h) at 14 days in vitro were in good agreement with those reported in the adult rat brain. The 5-HT content was more easily depleted with p-chlorophenylalanine, a tryptophan hydroxylase inhibitor than with NSD 1015 (3-hydroxybenzylhydrazine), an aromatic L-amino acid decarboxylase (AADC) inhibitor. Incubation of the cultures with tryptophan or 5-hydroxytryptophan increased the rate of serotonin formation implying that neither tryptophan hydroxylase nor AADC is saturated with its amino acid substrate in this in vitro system . The 5-HT content was depleted by reserpine. The 5-HT and 5-HIAA contents were increased and decreased, respectively, by monoamine oxidase inhibitors. All the above results indicate that the biochemical properties of the central serotonergic neurons in this culture system reflect reliably those of central serotonergic neurons in vivo. We suggest that measuring 5-HT and 5-HIAA contents in the primary cultured dissociated brainstem-cells with HPLC-EC is useful in the study of pharmacology as well as toxicolgy of the central serotonergic neurons.

  • PDF

Developmental Switch of the Serotonergic Role in the Induction of Synaptic Long-term Potentiation in the Rat Visual Cortex

  • Park, Sung-Won;Jang, Hyun-Jong;Cho, Kwang-Hyun;Kim, Myung-Jun;Yoon, Shin-Hee;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.1
    • /
    • pp.65-70
    • /
    • 2012
  • Synaptic long-term potentiation (LTP) and long-term depression (LTD) have been studied as mechanisms of ocular dominance plasticity in the rat visual cortex. Serotonin (5-hydroxytryptamine, 5-HT) inhibits the induction of LTP and LTD during the critical period of the rat visual cortex (postnatal 3~5 weeks). However, in adult rats, the increase in 5-HT level in the brain by the administration of the selective serotonin reuptake inhibitor (SSRI) fluoxetine reinstates ocular dominance plasticity and LTP in the visual cortex. Here, we investigated the effect of 5-HT on the induction of LTP in the visual cortex obtained from 3- to 10-week-old rats. Field potentials in layer 2/3, evoked by the stimulation of underlying layer 4, was potentiated by theta-burst stimulation (TBS) in 3- and 5-weekold rats, then declined to the baseline level with aging to 10 weeks. Whereas 5-HT inhibited the induction of LTP in 5-week-old rats, it reinstated the induction of N-methyl-D-aspartate receptor (NMDA)-dependent LTP in 8- and 10-week-old rats. Moreover, the selective SSRI citalopram reinstated LTP. The potentiating effect of 5-HT at 8 weeks of age was mediated by the activation of 5-$HT_2$ receptors, but not by the activation of either 5-$HT_{1A}$ or 5-$HT_3$ receptors. These results suggested that the effect of 5-HT on the induction of LTP switches from inhibitory in young rats to facilitatory in adult rats.

Selective serotonin reuptake inhibitor escitalopram inhibits 5-HT3 receptor currents in NCB-20 cells

  • Park, Yong Soo;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.509-517
    • /
    • 2019
  • Escitalopram is one of selective serotonin reuptake inhibitor antidepressants. As an S-enantiomer of citalopram, it shows better therapeutic outcome in depression and anxiety disorder treatment because it has higher selectivity for serotonin reuptake transporter than citalopram. The objective of this study was to determine the direct inhibitory effect of escitalopram on 5-hydroxytryptamine type 3 ($5-HT_3$) receptor currents and study its blocking mechanism to explore additional pharmacological effects of escitalopram through $5-HT_3$ receptors. Using a wholecell voltage clamp method, we recorded currents of $5-HT_3$ receptors when 5-HT was applied alone or co-applied with escitalopram in cultured NCB-20 neuroblastoma cells known to express $5-HT_3$ receptors. 5-HT induced currents were inhibited by escitalopram in a concentration-dependent manner. $EC_{50}$ of 5-HT on $5-HT_3$ receptor currents was increased by escitalopram while the maximal peak amplitude was reduced by escitalopram. The inhibitory effect of escitalopram was voltage independent. Escitalopram worked more effectively when it was co-applied with 5-HT than pre-application of escitalopram. Moreover, escitalopram showed fast association and dissociation to the open state of $5-HT_3$ receptor channel with accelerating receptor desensitization. Although escitalopram accelerated $5-HT_3$ receptor desensitization, it did not change the time course of desensitization recovery. These results suggest that escitalopram can inhibit $5-HT_3$ receptor currents in a non-competitive manner with the mechanism of open channel blocking.

5-Hydroxytryptamine 6 Receptor (5-HT6R)-Mediated Morphological Changes via RhoA-Dependent Pathways

  • Rahman, Md. Ataur;Kim, Hanna;Lee, Kang Ho;Yun, Hyung-Mun;Hong, Jung-Hwa;Kim, Youngjae;Choo, Hyunah;Park, Mikyoung;Rhim, Hyewhon
    • Molecules and Cells
    • /
    • v.40 no.7
    • /
    • pp.495-502
    • /
    • 2017
  • The $5-HT_6R$ has been considered as an attractive therapeutic target in the brain due to its exclusive expression in the brain. However, the mechanistic linkage between $5-HT_6Rs$ and brain functions remains poorly understood. Here, we examined the effects of $5-HT_6R$-mediated cell morphological changes using immunocytochemistry, Western blot, and live-cell imaging assays. Our results showed that the activation of $5-HT_6Rs$ caused morphological changes and increased cell surface area in HEK293 cells expressing $5-HT_6Rs$. Treatment with 5-HT specifically increased RhoA-GTP activity without affecting other Rho family proteins, such as Rac1 and Cdc42. Furthermore, live-cell imaging in hippocampal neurons revealed that activation of $5-HT_6Rs$ using a selective agonist, ST1936, increased the density and size of dendritic protrusions along with the activation of RhoA-GTP activity and that both effects were blocked by pretreatment with a selective $5-HT_6R$ antagonist, SB258585. Taken together, our results show that $5-HT_6R$ plays an important role in the regulation of cell morphology via a RhoA-dependent pathway in mammalian cell lines and primary neurons.

Imbalance in the spinal serotonergic pathway induces aggravation of mechanical allodynia and microglial activation in carrageenan inflammation

  • Junxiu Jin;Dong Ho Kang;Jin Jeon;Hyung Gon Lee;Woong Mo Kim;Myung Ha Yoon;Jeong Il Choi
    • The Korean Journal of Pain
    • /
    • v.36 no.1
    • /
    • pp.51-59
    • /
    • 2023
  • Background: This study investigated the effect of an excess and a deficit of spinal 5-hydroxytryptamine (5-HT) on the mechanical allodynia and neuroglia activation in a rodent pain model of carrageenan inflammation. Methods: Male Sprague-Dawley rats were implanted with an intrathecal (i.t.) catheter to administer the drug. To induce an excess or deficit of 5-HT in the spinal cord, animals were given either three i.t. 5-HT injections at 24-hour intervals or a single i.t. injection of 5,7-dihydroxytryptamine (5,7-DHT) before carrageenan inflammation. Mechanical allodynia was measured using the von Frey test for 0-4 hours (early phase) and 24-28 hours (late phase) after carrageenan injection. The changes in the activation of microglia and astrocyte were examined using immunofluorescence of the dorsal horn of the lumbar spinal cord. Results: Both an excess and a deficit of spinal 5-HT had no or a minimal effect on the intensity of mechanical allodynia during the early phase but prevented the attenuation of mechanical allodynia during the late phase, which was observed in animals not treated with i.t. 5-HT or 5,7-DHT. Animals with an excess or deficit of 5-HT showed stronger activation of microglia, but not astrocyte, during the early and late phases, than did normal animals. Conclusions: Imbalance in the descending 5-HT pathway in the spinal cord could aggravate the mechanical allodynia and enhance the activation of microglia, suggesting that the spinal 5-HT pathway plays an essential role in maintaining the nociceptive processing in balance between facilitation and inhibition in inflammatory pain caused by carrageenan inflammation.

Effect of Cholecystokinin on Serotonin Release from Cultured Neurons of Fetal Rat Medulla Oblongata (연수 신경세포 배양에서 세로토닌 분비에 대한 Cholecystokinin의 작용)

  • Song Dong-Keun;Cho Hyun-Mi;Lee Tae-Hee;Suh Hong-Won;Kim Yung-Hi
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.1 s.57
    • /
    • pp.11-15
    • /
    • 1995
  • Serotonergic neurons in medulla oblongata play an important role in the endogenous descending pain inhibitory system. To illucidate the factors involved in the regulation of medullary serotonergic neurons, we studied the effects of cholecystokinin (CCK) and agents acting on various second messenger systems on 5-hydroxytryptamine (5-HT) release from cultured neurons of rat fetal (gestational age 14th day) medulla oblongata. Cultured cells maintained for 10 days in vitro were stimulated for 48 hours with CCK or other neuropeptides at 10 micromolar concentration. CCK ($10{\mu}M$) and substance P ($10{\mu}M$) significantly increased. 5-HT release. However, somatostatin, proctolin, thyrotropin releasing hormone, and interleukin-6 did not have any effects on 5-HT release. Nimodipine ($1{\mu}M$), a calcium channel blocker, almost completely, and calmidazolium ($1{\mu}M$), a calmodulin antagonist, significantly inhibited the CCK-induced 5-HT release. The total 5-HT content (intracellular 5-HT plus released 5-HT) was significantly increased by CCK. However, the intracellular 5-HT content was not significantly changed by CCK. Forskolin ($5{\mu}M$), an adenylate cyclase activiator, but not $2{\mu}M$ phorbol myristate acetate (PMA), a protein kinase C activator, significantly enhanced 5-HT release. The total 5-HT content (intracellular 5-HT plus released 5-HT) was significantly increased by forskolin. However, the intracellular 5-HT content was not significantly changed by forskolin. PMA had no effect on intracellular 5-HT levels. These results suggest that CCK regulates serotonergic neurons in the medulla oblongata by enhancing 5-HT secretion through calcium influx and caimodulin, and that cyclic AMP system but not protein kinase C system is involved in 5-HT release.

  • PDF

Effects of Palonosetron, a 5-HT3 Receptor Antagonist, on Mechanical Allodynia in a Rat Model of Postoperative Pain

  • Jung, Ki Tae;Yoon, Myung Ha;Lee, Hyun Young;Yu, Bo Yeon;Kim, Dong Kyu;Lim, Kyung Joon
    • The Korean Journal of Pain
    • /
    • v.26 no.2
    • /
    • pp.125-129
    • /
    • 2013
  • Background: 5-hydroxytryptamine 3 (5-HT3) receptors have been known to be associated with the modulation of nociceptive transmission. However, it is uncertain whether 5-HT3 plays a role in the antinociceptive or pronociceptive pathway for incisional pain. In this study, we evaluated the effects of palonosetron, a 5-HT3 receptor antagonist, on incisional pain in rats when administered intrathecally or intraplantarly. Methods: An intrathecal catheter was implanted through the cisterna magna and placed in the intrathecal space of rats. An incision in the plantaris muscle of the right hind paw was done under anesthesia with sevoflurane. Withdrawal thresholds were evaluated with the von Frey filament after 2 hours. Palonosetron (0.5 and 0.1 ${\mu}g$ intrathecally; 0.5 ${\mu}g$ intraplantarly) was administered and the thresholds were observed for 4 hours. Results: Mechanical hypersensitivity developed after the incision. Intrathecal palonosetron (0.5 ${\mu}g$ and 0.1 ${\mu}g$) did not alter the paw withdrawal threshold. Intraplantar palonosetron (0.5 ${\mu}g$) also did not change the paw withdrawal threshold. Conclusions: Intrathecal and intraplantar palonosetron (0.5 ${\mu}g$) had no effect on modulating the mechanical hypersensitivity in the incisional pain model of rats.

Structure-Activity Relationship and Evaluation of Phenethylamine and Tryptamine Derivatives for Affinity towards 5-Hydroxytryptamine Type 2A Receptor

  • Shujie, Wang;Anlin, Zhu;Suresh, Paudel;Choon-Gon, Jang;Yong Sup, Lee;Kyeong-Man, Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.176-182
    • /
    • 2023
  • Among 14 subtypes of serotonin receptors (5-HTRs), 5-HT2AR plays important roles in drug addiction and various psychiatric disorders. Agonists for 5-HT2AR have been classified into three structural groups: phenethylamines, tryptamines, and ergolines. In this study, the structure-activity relationship (SAR) of phenethylamine and tryptamine derivatives for binding 5-HT2AR was determined. In addition, functional and regulatory evaluation of selected compounds was conducted for extracellular signal-regulated kinases (ERKs) and receptor endocytosis. SAR studies showed that phenethylamines possessed higher affinity to 5-HT2AR than tryptamines. In phenethylamines, two phenyl groups were attached to the carbon and nitrogen (R3 ) atoms of ethylamine, the backbone of phenethylamines. Alkyl or halogen groups on the phenyl ring attached to the β carbon exerted positive effects on the binding affinity when they were at para positions. Oxygen-containing groups attached to R3 exerted mixed influences depending on the position of their attachment. In tryptamine derivatives, tryptamine group was attached to the β carbon of ethylamine, and ally groups were attached to the nitrogen atom. Oxygen-containing substituents on large ring and alkyl substituents on the small ring of tryptamine groups exerted positive and negative influence on the affinity for 5-HT2AR, respectively. Ally groups attached to the nitrogen atom of ethylamine exerted negative influences. Functional and regulatory activities of the tested compounds correlated with their affinity for 5-HT2AR, suggesting their agonistic nature. In conclusion, this study provides information for designing novel ligands for 5-HT2AR, which can be used to control psychiatric disorders and drug abuse.

Modification of Endothelium on Contractile Response of Brain Vessels to Contracting Agents (혈관 수축제의 뇌혈관 수축반응에 대한 혈관근 내피세포의 역할)

  • Kook, Young-Johng;Baik, Yung-Hong;Kim, Jong-Keun;Choi, Bong-Kyu;Choi, Soo-Hyung;Kim, Yung-In
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.2
    • /
    • pp.203-216
    • /
    • 1988
  • To delineate the mechanisms of vasoconstriction and vasodilation in cerebral arteries the effects of some vasoconstrictors and calcium antagonists on the basilar artery (BA) and arterial circle of Willis (WC) were examined and also the role of endothelium in the action of these drugs was investigated in pigs, cats and rabbits. In pig cerebral arteries, dose-dependent contractile responses were elicited by KCI, histamine, 5-hydroxytryptamine (5-HT) and angiotensin, but norepinephrine (NE), phenylephrine (PE) and epinephrine (EP) elicited dose-dependent contractions only under pretreatment with propranolol 10-6 M. The magnitudes of maximal contractile effects of these drugs were different from each other, and 5-H~ was the largest and angiotensin the smallest. Some calcium antagonists dose-dependently inhibited KCI (35 mM)-induced contraction and the order of potency in inhibiting the contraction was nifedipine > > diltiazem > flunarizine > oxybutynin > isosorbide dinitrate (ISDN) > glyceryl trinitrate. 5-HT (10-6 M)-induced contraction was dosedependently inhibited by nifedipine but slightly inhibited by diltiazem and ISDN. In rings with intact endothelium, KCI (35 mM)-induced contraction was not affected by acetylcholine (ACh) but $PGF_{2{\alpha}}$ (lO-SM)-induced contraction was dose-dependently relaxed by ACh and adenosine. This endothelium-dependent relaxation was not affected by nifedipine (l0-6M)-pretreatment but markedly inhibited by methylene blue (50,uM)-pretreatment. In the porcine arterial rings without endothelium, ACh had no effect or even contracted the $PGF_{2{\alpha}}-induced$ contraction. However, the dosedependent relaxing effect of ACh appeared when the deendothelized porcine ring and rabbit thoracic aorta with intact endotheli urn were simultaneously suspended into a bath and this relaxing effect was also inhibited by methylene blue-pretreatment. In cat cerebral arteries, 5-HT and NE elicited dose-dependent contractile responses and ACh also produced dose-dependent contraction regardless of the existence of endothelium. ACh-induced contraction was most prominent. 5-HT (IO-SM)induced contraction was not relaxed but contracted additionally by ACh even in the intact endothelial ring. In rabbit cerebral arteries, 5-HT and NE elicited dose-dependent contractile responses and 5-HT-induced contraction was more prominent. In the intact endothelial preparations, 5-HT (lO-s M)-induced contraction was markedly relaxed by the addition of ACh( IO-SM) and this endothelium-dependent relaxing effect was inhibited by atropine (l0-7M)-pretreatment but notaffected by diltiazem (l0-6M)-pretreatment. These results suggest that ACh elicits endotheliumdependent relaxing effect mediated by muscarinic receptors in cerebral arteries of pig and rabbit, and that ACh acts as vasoconstrictor in cat cerebral artery.

  • PDF