• Title/Summary/Keyword: 5-hole probe

Search Result 86, Processing Time 0.027 seconds

Development and Characterization of Vertical Type Probe Card for High Density Probing Test (고밀도 프로빙 테스트를 위한 수직형 프로브카드의 제작 및 특성분석)

  • Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.9
    • /
    • pp.825-831
    • /
    • 2006
  • As an increase of chip complexity and level of chip integration, chip input/output (I/O) pad pitches are also drastically reduced. With arrival of high complexity SoC (System on Chip) and SiP (System in Package) products, conventional horizontal type probe card showed its limitation on probing density for wafer level test. To enhance probing density, we proposed new vertical type probe card that has the $70{\mu}m$ probe needle with tungsten wire in $80{\mu}m$ micro-drilled hole in ceramic board. To minimize alignment error, micro-drilling conditions are optimized and epoxy-hardening conditions are also optimized to minimize planarity changes. To apply wafer level test for target devices (T5365 256M SDRAM), designed probe card was characterized by probe needle tension for test, contact resistance measurement, leakage current measurement and the planarity test. Compare to conventional probe card with minimum pitch of $50{\sim}125{\mu}m\;and\;2\;{\Omega}$ of average contact resistance, designed probe card showed only $22{\mu}$ of minimum pitch and $1.5{\Omega}$ of average contact resistance. And also, with the nature of vertical probing style, it showed comparably small contact scratch and it can be applied to bumping type chip test.

Experimental Study on the Aerodynamic Characteristics of a Counter-Rotating Axial Fan (엇회전식 축류홴의 공력 특성에 관한 실험적 연구)

  • Choi, Jin-Yong;Cho, Lee-Sang;Cho, Jin-Soo;Won, Eu-Pil
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.441-446
    • /
    • 2000
  • The experiments of the Aerodynamic characteristics of a counter-rotating axial fan were carried out. The performance tests of a single and a counter-rotating axial fan were carried out based on the Korean Standard Testing Methods for Turbo-fans and Blowers(KS B 6311). The performances of single and counter-rotating axial fans were obtained and compared with each other. The flow fields of a counter-rotating axial fan at the peak efficiency point were measured using a five-hole probe. As a result, compared with the performance of a single-rotating axial fan, that of a counter-rotating axial fan was superior. And it is confirmed that most of the swirl flow generated by the front rotor was eliminated by the rear rotor.

  • PDF

Experimental Study on the Mean Flow Characteristics of Forward-Curved Centrifugal Fans

  • Kwon, Eui-Yong;Cho, Nam-Hyo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1728-1738
    • /
    • 2001
  • Measurements have been made in an automotive HVAC b1ower for two different centrifugal fans. This work is directed at improving the performance of a conventional forward-curved centrifugal fan for a given small blower casing. Mean velocities and pressure have been measured using a miniature five-hole probe and a pressure scanning unit connected to an online data acquisition system. First, we obtained the fan performance versus flow rates showing a significant attenuation of unstable nature achieved with the new fan rotor in the surging operation range. Second, aerodynamic characterizations were carried out by investigating the velocity and pressure fields in the casing flow passage for different fan operating conditions. The measurements stowed that performance coefficients are strongly influenced by flow characteristics at the throat region. The main flow features ware common in both fans, but improved performance is achieved with tole new fan rotor, particularly in lower flow rate legions. Based on the measured results, design improvements were carried out in an acceptable operation range, which gave considerable insight into what features of flow behavior ware most important.

  • PDF

The Effect of Reynolds Number on the Three-Dimensional Flow Measurements with a Two-Stage Cone-Type Five-Hole Probe in a Non-Nulling Mode (Reynolds 수가 2단 원추형 5공프로브를 이용한 3차원 유동 측정에 미치는 영향 - 저속 유동장에서의 보정 결과 -)

  • Lee, Sang-U;Jeon, Sang-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.27-38
    • /
    • 2002
  • The effects of Reynolds number on the non-nulling calibrations of a cone-type ave-type probe in low-speed flows have been investigated at Reynolds numbers of 2.04$\times$10$^3$, 4.09$\times$10$^3$and 6.13$\times$10$^3$. The calibration is conducted at the pitch and yaw angles in ranges between -35 degrees and 35 degrees with an angle interval of 5 degrees. In addition to the calibration coefficients, reduced pitch and yaw angles, static and total pressures, and velocity magnitude are obtained through a typical non-nulling reduction procedure. The result shows that each calibration coefficient, in general, is a function of both the pitch and yaw angles, so that the pre-existing calibration data in a nulling mode are not enough in accounting far the full non-nulling calibration characteristics. Due to interference of the probe stem, the calibration coefficient are more sensitive to Reynolds number at positive pitch angles than at negative ones. The calibration data reduced in this study may serve as a guide line in the estimation of uncertainty intervals resulted from the Reynolds number effects at low Reynolds numbers.

Experimental Study on the Performance of a Forward-Curved Centrifugal Fan for an Automotive Air-Conditioner (자동차 에어컨용 전곡형 원심 송풍기의 공력성능 분석)

  • Kwon, Eui-Yong;Cho, Nam-Hyo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.122-128
    • /
    • 2000
  • Aerodynamic optimization of an automotive air-conditioning blower is a hard task because of the highly complex flow phenomena related to three-dimensional flow separations and the unsteady nature caused by the interaction between primary and secondary air flows throughout the fan. In this paper, an aerodynamic study on a forward-curved centrifugal fan has been carried out Firstly we obtained the fan performance curves versus flow rates showing its unstable nature in the surging operation range. Secondly aerodynamic characterizations were carried out by investigating the velocity and pressure fields in the casing flow passage using a 5-hole pilot probe, at different operating conditions. Surface flow pattern near the cut-off area exhibits similar flow behavior above the best efficiency operating point, although the pressure level increases substantially with the Increase of flow rate. Vorticity in the casing passage flow occurs in all (low rates, downstream from the r-Z plane $\theta$=120 deg., where the position of its core changes with the circumferential location. Although complex, the general flow behavior were common, giving insight in its main aerodynamic features.

  • PDF

Creation of Electron Beam Probe in Scanning Electron Microscopy (주사 전자 현미경에서 전자빔 프르브 생성)

  • Lim, Sun-Jong;Lee, Chan-Hong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.52-57
    • /
    • 2008
  • Most of the electrons emitted from the filament, are captured by the anode. The portion of the electron current that leaves the gun through the hole in the anode is called the beam current. Electron beam probe is called the focused beam on the specimen. Because of the lenes and aperture, the probe current becomes smaller than the beam current. It generate various signals(backscattered electron, secondary electron) in an interaction with the specimen atoms. Backscattered electron provide an useful signal for composition and local specimen surface inclination. Secondary electron is used far the formation of surface imagination. The steady electron beam probe is very important for the imagination formation and the brightness. In this paper, we show the results of developed elements that create electron beam probe and the measured beam probe in various acceleration voltages by Faraday cup. These data are used to analysis and improve the performance of the system in the development.

Flow and Heat Transfer Characteristics due to the Variations of the Angle of Attack at the Vortex Generators located behind a Circular Cylinder (원주 후미에 부착된 와동발생기의 영각 변화에 따른 유동 및 열전달 특성)

  • 하홍영;홍철현;양장식;이기백
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.439-449
    • /
    • 2002
  • Experimental investigations of the flow structure and heat transfer enhancement in a channel with a built-in circular cylinder and a wing-let type vortex generator are presented. Without any vortex generators, relatively low heat transfer takes place in the downstream of the circular cylinder where is a recirculation region with low velocity fluid is formed. However with a wing-let type longitudinal vortex generator in the wake region behind the cylinder, heat transfer in the region can be enhanced. In order to control the strength of longitudinal vortices, the angle of attack of the vortex generators is varied from $20^{circ} to 45^{\circ}$, but spacings between the vortex generations are fixed to be 5 mm. The 3-dimensional mean velocity field downstream of the vortex generator is measured by a five-hole pressure probe, and the hue-capturing method using thermochromatic liquid crystals has been used to provide the local distribution of the heat transfer coefficient. The vorticity field and streamwise velocity contour are obtained from the velocity field. Streamwise distributions of averaged Stanton number on the measurement planes show very similar trends for all the experimental cases($\beta=20^{circ}, 30^{circ} and 45^{\circ}$). Circulation strength and heat transfer coefficient have the maximum values when the angle of attack($\beta$) is $30^{\circ}$.

An Experimental Study on the Aerodynamic Characteristics of a Stealth Configuration (스텔스 형상 공력특성에 관한 실험적 연구)

  • Oh, See-Yoon;Kim, Sang-Ho;Ahn, Seung-Ki;Cho, Cheol-Young;Lee, Jong-Geon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.962-968
    • /
    • 2008
  • An experimental study of the aerodynamic characteristics of a stealth configuration, the test techniques developed for the testing in the Low Speed Wind Tunnel of Agency for Defense Development(ADD-LSWT), and the lessons learned have been presented. The main objectives of this test are to determine the aerodynamic characteristics of a stealth configuration and to measure the flow field characteristics with a 5-hole pressure probe. The test results are discussed and the effect of the leading edge shape on the aerodynamic characteristics is also given.

Investigation of Vortex Interactions over a Delta Wing with the Leading Edge Extension (연장된 앞전을 갖는 델타형 날개에서의 와류 상호작용에 관한 연구)

  • 이기영;손명환;장영일
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.215-224
    • /
    • 2001
  • An experimental investigation was conducted on the interaction of vortices over a delta wing with the leading edge extension for three angles of attack($16^{\circ},\; 24^{\circ} \;and\; 28^{\circ}$) at Reynolds number of $1.76{\times}10^6.$ The experimental data included total pressure contours and velocity vectors using 5-hole probe measurements. Constant total pressure coefficient contours show the LEX vortex moves downward and outboard, while the wing vortex exhibited an inboard and upward migration. At near the trailing edge, these vortices reveal a direct interaction between the wing and LEX vortex, featuring a coiling of vortex cores about each other. The combined effect of the interaction of these two vortices and proximity to the wing surface results in the increase of the suction peak. This is in contrast to the result obtained on the delta wing alone configuration, where the effect of the vortex breakdown was manifested. The interaction of the wing and LEX vortices is more pronounced at higher AOA.

  • PDF

Effect of Turbine Blade tip shape on the Total Pressure Loss of a Turbine Cascade (블레이드 팁 형상이 터빈 캐스케이드 전압 손실에 미치는 영향에 대한 연구)

  • Lee, Ki-Seon;Park, Seoung-Duck;Noh, Young-Chul;Kim, Hak-Bong;Kwak, Jae-Su;Jun, Yong-Min
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.2
    • /
    • pp.39-45
    • /
    • 2009
  • Leakage flow through turbine blade tip gap causes strong leakage vortex near the blade suction side and induces large aerodynamic losses. In this study, the conventional plane tip and various squealer tip blades were tested in a linear cascade in order to measure the effect of the tip shape on the total pressure loss. Three tip gap clearances of 0.6%, 1.3%, and 2.0% of blade span were tested. Flow measurement was conducted at one chord downstream from the trailing edge with a five-hole probe. Results showed that the leakage vortex was stronger than passage vortex and the mass averaged overall total pressure loss through the cascade was the lowest for suction side blade tip case. For all tested cases, the area averaged overall total pressure loss was increased as the tip clearance increased.