• Title/Summary/Keyword: 5-GHz

Search Result 3,312, Processing Time 0.053 seconds

Design of Triple-band Triple Dipole Quasi-Yagi Antenna for WLAN and WiMAX Applications (무선 랜과 WiMAX 응용을 위한 삼중 대역 삼중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.1
    • /
    • pp.29-34
    • /
    • 2022
  • In this paper, the design of a triple dipole quasi-yagi antenna operating in the 2.45 GHz and 5 GHz wireless LAN frequency bands and the 3.5 GHz WiMAX frequency band was studied. The proposed quasi-Yagi antenna consists of three dipoles connected in series with a V-shaped ground plane. The longest half-bow-tie-shaped dipole resonates in the 2.45 GHz band, whereas the medium-length dipole resonates at 3.5 GHz. The shortest dipole resonates in the 5 GHz band. By adjusting the length and width of the dipoles and the spacings between the dipoles, a triple-band directional antenna operating in the 2.45 GHz, 3.5 GHz, and 5 GHz bands are designed, and fabricated on an FR4 substrate with a size of 45 mm × 55 mm. It was confirmed that the fabricated antenna operates in the designed triple bands of 2.32-2.57 GHz, 3.26-3.69 GHz, and 4.50-6.56 GHz for a voltage standing wave ratio less than 2. Gain is maintained above 3 dBi in the three bands.

Design of Microstrip-fed Dual Band Monopole Antenna for WLAN (마이크로스트립 급전 무선랜용 이중대역 모노폴 안테나 설계)

  • Nam, Ju-Yeol;Lee, Young-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.490-495
    • /
    • 2016
  • In the present study, a microstrip-fed monopole antenna is proposed for wireless local area network (WLAN) operations which cover dual band of 2.4 GHz (2.4 ~ 2.484 GHz) and 5 GHz (5.15 ~ 5.825 GHz). In order to obtain its compact structure and good omnidirectional radiation patterns, a modified inverted L-shaped slot separated from ground for impedance matching in 5 GHz band is etched on 2.4 GHz printed monopole antenna. The proposed antenna is designed and fabricated on a FR4 substrate with dielectric constant 4.3, thickness of 1.6 mm, and size of $30{\times}45mm^2$. The measured impedance bandwidths (${\mid}S_{11}{\mid}{\leq}-10dB$) of fabricated antenna are 270 MHz (2.22 ~ 2.48 GHz) in 2.4 GHz band and 890 MHz (5.08 ~ 5.97 GHz) in 5 GHz band respectively. In particular, high gain of more than about 4 dBi and good omnidirectional radiation patterns have been observed over the entire frequency band of interest.

Design and Analysis of Dual Band I/Q Modulator For Wireless LAN (무선랜용 이중대역 I/Q 모듈레이터의 설계 및 특성 해석)

  • Park, Hyun-Woo;Koo, Kyung-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.3
    • /
    • pp.1-6
    • /
    • 2008
  • A dual band I/Q modulator which converts baseband input signals to 2.4GHz or 5GHz RF output has been proposed. The dual band I/Q modulator for 2.4GHz and 5GHz wireless LAN applications consists of $90^{\circ}$ phase shifter and wideband mixer. The I/Q modulator showed 15dB conversion loss at 2.4GHz and 16dB conversion loss at 5GHz. The sideband suppression is about 15dBc at 2.4GHz and 16dBc at 5GHz. Measured data shows 8.5% EVM at 2.4GHz, and 10% EVM at 5GHz for QPSK with symbol rate of 11Mbps. A carrier rejection is about 40dBc at 2.4GHz/5GHz band, and the I/Q modulator satisfied the output wireless LAN spectrum mask with baseband input signal.

Design of CMOS LC VCO with Linearized Gain for 5.8GHz/5.2GHz/2.4GHz WLAN Applications (5.8GHz/5.2GHz/2.4GHz 무선 랜 응용을 위한 선형 이득 CMOS LC VCO의 설계)

  • Ahn Tae-Won;Moon Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.6 s.336
    • /
    • pp.59-66
    • /
    • 2005
  • CMOS LC VCO for tri-bind wireless LAN applications was designed in 1.8V 0.18$\mu$m CMOS process. PMOS transistors were chosen for VCO core to reduce flicker noise. The possible operation was verified for 5.8GHz band (5.725$\~$5.825GHz), 5.2GHz band (5.150$\~$5.325GHz), and 2.4GHz band (2.412$\~$2.484GHz) using the switchable L-C resonators. To linearize its frequency-voltage gain (Kvco), optimized multiple MOS varactor biasing technique was used for capacitance linearization and PLL stability improvement. VCO core consumed 2mA current and $570{\mu}m{\times}600{\mu}m$ die area. The phase noise was lower than -110dBc/Hz at 1MHz offset for tri-band frequencies.

A Study on Rectangular Planar Monopole Antenna with a Double Sleeve Using Half Cutting (하프 커팅을 이용한 이중 슬리브를 갖는 직사각형 평면 모노폴 안테나에 관한 연구)

  • Kang, Sang-Won;Chang, Tae-Soon;Choe, Gwang-Je
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.257-262
    • /
    • 2017
  • In this paper, we proposed a rectangular planar monopole antenna with a double sleeve that applied to a half-cut and a discontinuous feed structure. A rectangular planar monopole antenna with a double sleeve was cut in half along the magnetic symmetry line, and impedance matching was achieved by a discontinuous structure was applied to a feeder and by adjusting the double sleeve gap. We used the HFSS simulator of ANSYS company to confirm the antenna parameter property, and the antenna size was $21{\times}40mm^2$. In the proposed antenna, the simulation frequency range with VSWR of 2 or less was 2.6GHz to 10.25GHz. The bandwidth was 7.65GHz. The frequency range of the fabricated antenna was 3.3GHz to 9.75GHz, and the bandwidth was 6.45GHz. The measured radiation pattern frequencies were 3.5GHz, 5.5GHz, 7.5GHz, and 9.5GHz. A radiation pattern similar to the dipole antenna pattern was obtained at all frequencies.

Double Square Patch Antenna with Inductive Bridges for WLAN Dual-Band (인덕티브 브릿지를 가진 WLAN 이중 대역 이중 사각 패치 안테나)

  • Yang, Chan-Woo;Jung, Chang-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2615-2618
    • /
    • 2009
  • Double rectangular patch with 4-bridges is investigated for solution of IEEE 802.11b/g (2.4 GHz) and 802.11a (5.5 GHz). Rectangular patch for 5.5 GHz frequency band is printed on the PCB substrate and connected to another rectangular patch for 2.4 GHz frequency band with 4-bridges to obtain dual band operation in an antenna element. 4-bridges can modify the desired frequency band from its original frequency band by changing its width. Gain of 2.4 GHz patch is 5 dBi and 5.5 GHz patch is 3.7 dBi at ${\theta}=0^{\circ}$.

Design of Wide band folded monopole slot antenna for 3G/4G/5G/Wi-Fi(dual band) services (3G/4G/5G/Wi-Fi(이중대역)용 광대역 모노폴 슬롯 안테나 설계)

  • Shin, Dong-Gi;Lee, Yeong-Min;Lee, Young-Soon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.127-134
    • /
    • 2022
  • A modified folded monopole slot antenna for 3G WCDMA (1.91 ~ 2.17 GHz), 4G LTE (2.17 ~ 2.67 GHz), 3.5 GHz 5G (3.42 ~ 3.7 GHz) and Wi-Fi dual band (2.4 ~ 2.484 GHz / 5.15 ~ 5.825 GHz) was proposed for the first time. The proposed antenna is designed and fabricated on a FR-4 substrate with dielectric constant 4.3, thickness of 1.6 mm, and size of 35 × 60 mm2. The measured impedance bandwidth of the proposed antenna is 2910 MHz(1.84 ~ 4.75 GHz) and 930 MHz(5.11 ~ 6.04 GHz), antenna gain in each frequency band is from 1.811 to 3.450 dBi. In particular, it was possible to obtain a commercially suitable omni-directional radiation pattern in all frequency bands of interest.

Design of 2.4/5.8GHz Dual-Frequency CPW-Fed Planar Type Monopole Active Antennas (2.4/5.8GHz 이중 대역 코프래너 급전 평면형 모노폴 능동 안테나 설계)

  • Kim, Joon-Il;Chang, Jin-Woo;Lee, Won-Taek;Jee, Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.8
    • /
    • pp.42-50
    • /
    • 2007
  • This paper presents design methods for dual-frequency(2.4/5.8GHz) active receiving antennas. The proposed active receiving antennas are designed to interconnect the output port of a wideband antenna to the input port of an active device of High Electron Mobility Transistor directly and to receive RF signals of 2.4GHz and 5.2GHz simultaneously where the impedance matching conditions are optimized by adjusting the length of $1/20{\lambda}_0$(@5.8GHz) CPW transmission line in the planar antenna The bandwidth of implemented dual-frequency active receiving antennas is measured in the range of 2.0GHz to 3.1GHz and 5.25GHz to 5.9GHz. Gains are measured of 17.0dB at 2.4GHz and 15.0dB at 5.2GHz. The measured noise figure is 1.5dB at operating frequencies.

Design and implementation of planar UWB antenna with dual band rejection characteristics

  • Woon Geun Yang;Tae Hyeon Nam
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.109-115
    • /
    • 2023
  • In this paper, we design and implement an Ultra-Wide Band (UWB, 3.1~10.6 GHz) antenna with 5G mobile communication (3.42~3.70 GHz) and Wireless Local Area Network (WLAN, 5.15~5.825 GHz) bands rejection characteristics. The proposed antenna consists of a planar radiation patch with two slots. The upper slot contributes to reject 5G mobile communication band and the lower slot contributes to reject WLAN band. The Voltage Standing Wave Ratio (VSWR) values of the proposed antenna show good performances in whole UWB band except for rejection bands based on VSWR 2.0. The proposed UWB antenna was simulated using High Frequency Struture Simulator (HFSS) by Ansoft. The simulated antenna showed dual rejection bands of 3.31~3.92 GHz and 5.04~5.90 GHz in UWB band, and measured antenna showed dual rejection bands of 3.35~3.97 GHz and 5.06~5.97 GHz. The largest VSWR values measured at each rejection band are 13.60 at 3.64 GHz and 10.25 at 5.52 GHz. The measured maximum gain is 5.31 dBi at 10.00 GHz. The lowest gains for the measured antenna at rejection bands are -8.73 dBi at 3.70 GHz and -4.36 dBi at 5.56 GHz.

Phase Locked Loop Sub-Circuits for 24 GHz Signal Generation in 0.5μm SiGe HBT technology

  • Choi, Woo-Yeol;Kwon, Young-Woo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.281-286
    • /
    • 2007
  • In this paper, sub-circuits for 24 GHz phase locked 100ps(PLLs) using $0.5{\mu}m$ SiGe HBT are presented. They are 24 Ghz voltage controlled oscillator(VCO), 24 GHz to 12 GHz regenerative frequency divider(RFD) and 12 GHz to 1.5 GHz static frequency divider. $0.5{\mu}m$ SiGe HBT technology, which offers transistors with 90 GHz fMAX and 3 aluminum metal layers, is employed. The 24 GHz VCO employed series feedback topology for high frequency operation and showed -1.8 to -3.8 dBm output power within tuning range from 23.2 GHz to 26 GHz. The 24 GHz to 12 GHz RFD, based on Gilbert cell mixer, showed 1.2 GHz bandwidth around 24 GHz under 2 dBm input and consumes 44 mA from 3 V power supply including I/O buffers for measurement. ECL based static divider operated up to 12.5 GHz while generating divide by 8 output frequency. The static divider drains 22 mA from 3 V power supply.