• 제목/요약/키워드: 5-Force

Search Result 6,273, Processing Time 0.033 seconds

Cutting Force Test of Cutting Blade Modules for Slitter Design

  • Kim, Young-Hwan;Cho, Yung-Zun;Lee, Young-Soon
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2017.10a
    • /
    • pp.189-190
    • /
    • 2017
  • For the concept design of the device, a tool was made to test the simulated fuel rods and cutting force and the cutting force was measured. When 2-CUT and 3-CUT modules were used, the maximum force in 2-CUT at 12.5 mm/s speed change was $197.5kg_f$ and the maximum force at 3-CUT was $363.2kg_f$. The change of force in 2-CUT rapidly increases from about 1 second, and you can see that there are increase and decrease of the force change from about 5 seconds to 18 seconds, and it was rapidly decreased and the cut was made. The force change in 3-CUT has higher force at about 5 seconds later than 2-CUT at the speed of 12.5 mm/s, and you can see that it has the same tendency afterwards. If you search for the force at adequate speed from this cutting force test, 2-CUT module requires less slitting force than 3-CUT module, and the cutting time for 250 mm at 12.5 mm/s was 21 seconds, which can cut 4 m fuel rod in 5 minutes. But, there are cases of not completely slitting with 2-CUT module, so it is necessary to supplement this in the future through experiments.

  • PDF

Design and fabrication of force measuring system using build-up procedure (증강 원리를 이용한 힘 측정 시스템 설계 및 제작에 관한 연구)

  • Kang, Dae-Im;Song, Hou-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.86-94
    • /
    • 1993
  • In heavy industries forces which are exceeding the range of available force standard machines have to be measured. Force measuring system using build-up procedure can be applied to measure large forces efficiently. In this study strain gage type force sensors are designed and fabricated, and the build-up force measuring system with 4.5 MN capacity using the developed force sensors is 0.03% or less over the range of 600 kN .approx. 1.5 MN and the force measuring system is less than 0.06% or less over the range of 500 kN .approx. 4.5 MN.

  • PDF

Large Force Measuring System Using Build-up Technique; (Build-up 기법을 이용한 대용량 힘 측정 시스템 개발)

  • Kang, Dae-Im;Song, Hou-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.477-484
    • /
    • 1997
  • This paper describes the build-up force measuring system of 9.9 MN capacity which consists of nine force transducers of each having 1.1 MN capacity. We have specially designed a force transducer for a build-up force measuring system to reduce the uncertainty of a build-up system and to accomodate the new test procedure for a build-up system. It reveals that the relative uncertainty of the force measuring system is less than 1.5*10$^{-4}$ in the ran9e of 1-4.5 MN irrespective of loading direction. The force measuring system may be used to calibrate a 10 MN force standard machine to be used as a large force standard in Korea.

Micro Polishing Force Control of the Polishing Machine with the Airbag Tool (에어백 공구 기반의 광학 연마 장치의 미세 힘 제어 구현)

  • Lee, Ho-Cheol;Lee, Chang-Eun;Je, Tae-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.714-719
    • /
    • 2012
  • In this paper, the polishing force monitoring and the control method were implemented for the polishing machine with the airbag tool. Airbag tool has been known to be adaptable to the curvature variation such as the aspherical and the free-form surface. However, it was necessary to control the tool movement of vertical axis also because of the table rotational wobble and vibration. To solve it by the polishing force control, we installed another stepping motor to the z-axis. And the polishing force was measured with the load cell and controlled by the PID Labview controller. A few hundreds gram of the polishing force were well controlled under 0.8 second of the response time and 5% variation. An experiment was done to clean the edge burrs of the micro channel structure of width $87{\mu}m$ using the polishing force control.

Analysis of the Infrared Absorption Spectrums of Magnesite (마그네사이트의 적외선 흡수 스펙트럼 해석)

  • 오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.14 no.4
    • /
    • pp.226-229
    • /
    • 1977
  • The infrared absorption spectrum of Synthesized magnesite is shown in the wve number region 2510 and 745cm-1. By using Wilson's GF matrices the force constants' of the Urey-Bradley force field were deterined from the infrared absorption frequencies. For magnesite the stretching force constant K=5.41, the bending force constant H=0.46, the repulsive force constant F=1.97, and the force constant for the out-of-plane vibration fθ=0.65md/Å. For calcite they are K=5.51, H=0.38, F=1.88 and fθ=0.64md/Å.

  • PDF

Design of Calf Link Force Sensor of Walking Assist Robot of Leg Patients (편마비 다리환자를 위한 보행보조로봇의 발목 2축 힘센서 설계)

  • Choi, Chi-Hun;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.353-359
    • /
    • 2017
  • This paper describes the design and manufacture of a ankle two-axis force sensor of a walking assist robot for hemiplegic leg patient. The walking assist robot for the hemiplegic leg patient can safely control the robot by detecting whether the foot wearing the walking assist robot is in contact with the obstacle or not. To do so, a two-axis force sensor should be attached to the robot's ankle. The sensor is used to measure the force of a patient's ankle lower part. The two-axis force sensor is composed of a Fx force sensor, a Fy force sensor and a pulley, and they detect the x and y direction forces, respectively. The two-axis force sensor was designed using by FEM(Finite Element Method), and manufactured using by strain-gages. The characteristics experiment of the two-axis force sensor was carried out respectively. The test results indicated that the interference error of the two-axis force sensor was less than 1.2%, the repeatability error and the non-linearity of the two-axis force sensor was less than 0.04% respectively. Therefore, the fabricated two-axis force sensor can be used to measure the force of ankle lower part in the walking assist robot.

Development of Cylindrical-type Finger Force Measuring System Using Two-axis Force/Moment Sensor and its Characteristic Evaluation (2축 힘/모멘트센서를 이용한 원통형 손가락 힘측정장치 개발 및 특성평가)

  • Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.484-489
    • /
    • 2011
  • Some patients can't use their hands because of inherent and acquired paralysis of their fingers. Their fingers can recover with rehabilitative training, and the extent of rehabilitation can be judged by grasping a cylindrical-object with their fingers. At present, the cylindrical-object used in hospitals is only a cylinder which cannot measure grasping force of the fingers. Therefore, doctors must judge the extent of rehabilitation by watching patients' fingers as they grasp the cylinder. A cylindrical-type finger force measuring system which can measure the grasping force of patients' fingers should be developed. This paper looks at the development of a cylindrical-type finger force measuring system with two-axis force/moment sensor which can measure grasping force. The two-axis force/moment sensor was designed and fabricated, and the high-speed force measuring device was designed and manufactured by using DSP (digital signal processing). Also, cylindrical-type finger force measuring system was developed using the developed two-axis force/moment sensor and the high-speed force measuring device, and the grasping force tests of men were performed using the developed system. The tests confirm that the average finger forces of right and left hands for men were about 186N and 172N respectively.

Evaluation of the Contributions of Individual Finger Forces in Various Submaximal Grip Force Exertion Levels

  • Kong, Yong-Ku;Lee, Inseok;Lee, Juhee;Lee, Kyungsuk;Choi, Kyeong-Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.361-370
    • /
    • 2016
  • Objective:The aim of this study is to evaluate contributions of individual finger forces associated with various levels of submaximal voluntary contraction tasks. Background: Although many researches for individual finger force have been conducted, most of the studies mainly focus on the maximal voluntary contraction. However, Information concerning individual finger forces during submaximal voluntary contraction is also very important for developing biomechanical models and for designing hand tools, work equipment, hand prostheses and robotic hands. Due to these reasons, studies on the contribution of individual finger force in submaximal grip force exertions should be fully considered. Method: A total of 60 healthy adults without any musculoskeletal disorders in the upper arms participated in this study. The young group (mean: 23.7 yrs) consisted of 30 healthy adults (15 males and 15 females), and the elderly group (mean: 75.2 yrs) was also composed of 30 participants (15 males and 15 females). A multi-Finger Force Measurement (MFFM) System developed by Kim and Kong (2008) was applied in order to measure total grip strength and individual finger forces. The participants were asked to exert a grip force attempting to minimize the difference between the target force and their exerted force for eight different target forces (5, 15, 25, 35, 45, 55, 65, and 75% MVCs). These target forces based on the maximum voluntary contraction, which were obtained from each participant, were randomly assigned in this study. Results: The contributions of middle and ring fingers to the total grip force represented an increasing trend as the target force level increased. On the other hand, the contributions of index and little fingers showed a decreasing trend as the target force level increased. In particular, Index finger exerted the largest contribution to the total grip force, followed by middle, ring and little fingers in the case of the smallest target force level (5% MVC), whereas middle finger showed the largest contribution, followed by ring, index and little fingers at the largest target force levels (65 and 75% MVCs). Conclusion: Each individual finger showed a different contribution pattern to the grip force exertion. As the target force level increase from 5 to 75% MVC, the contributions of middle and ring fingers showed an increasing trend, whereas the contributions of index and little fingers represented a decreasing trend in this study. Application: The results of this study can be useful information when designing robotic hands, hand tools and work equipment. Such information would be also useful when abnormal hand functions are evaluated.

A Study on the Design of Rifling Angle by Setting up an Idealized Rifling Force Curve (이상적인 강선력 곡선에 의한 강선각 설계기법)

  • Cha, Kiup;Ahn, Sangtae;Cho, Changki;Choi, Euijung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • Rifling Force can be described with projectile velocity, gas pressure and rifling angle, etc. Under the same conditions, the character of the rifling angle decisively influences the rifling force. To reduce the harmful effect, locally distinct maximum of rifling force has to be avoided. The optimal design methodology of rifling angle curve had been developed by combined Fourier series and polynomial function. When it was tried newly to design the rifling angle curve, this design trial caused not to produce the lower rifling force than the existing design. Normally, the curve of the rifling angle is designed first, then the rifling force is set according to the rifling angle curve. However during the cause analysis, new design methodology was established to design the ideal rifling force curve before the rifling angle design. With this new methodology, the above optimal design method was analyzed and its limitation was confirmed.

Development of four-finger force measuring system of a cylindrical type (원통형 4손가락 힘측정시스템 개발)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.349-355
    • /
    • 2010
  • Stroke patients, etc. can't use their hands because of the paralysis of their fingers, and their fingers could be recovered by rehabilitating training. In order to judge the rehabilitating extent of their fingers, the patients should grasp a cylindrical object in hospital. At present, the used object in hospital is only a cylindrical object, and can't measure the force of fingers. Therefore, doctors judge the rehabilitating extent by touching and watching at their fingers. So, the four-finger force measuring system which can measure the force of their fingers should be developed. In this paper, four-finger force measuring system with four force sensors which can measure the grasping force is developed. The force sensors are designed and fabricated, and the force measuring device is designed and manufactured by using DSP(digital signal processing). Also, the grasping force test of men is performed by using the developed four-finger force measuring system. It was confirmed that the finger average force of right hand is about 214.6 N and that of left hand is about 212.8 N.