• Title/Summary/Keyword: 5 Force Model

Search Result 1,120, Processing Time 0.029 seconds

Control of Damping Coefficients for the Shear Mode MR Dampers Using Inverse Model (역모델을 이용한 MR 댐퍼의 감쇠계수 제어)

  • Na, Uhn Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.445-455
    • /
    • 2013
  • A new linearization model for MR dampers is analyzed. The nonlinear hysteretic damping force model of MR damper can be modeled as a hyperbolic tangent function of currents, positions, and velicities, which is an algebraic function with constant parameters. Model parameters can be identified with numerical method using experimental force-velocity-position data obtained from various operating conditions. The nonlinear hysteretic damping force can be linearized with a given slope of damping coefficient if there exist corresponding currents to compensate for the nonlinearity. The corresponding currents can be calculated from the inverse model when the given linear damping force is set equal to the nonlinear hysteretic damping force. The linearization controller is realized in a DSP controller such that the corresponding currents to satisfy a given damping coefficient should be calculated. Experiments show that the current inputs to the MR damper produce linearized damping force with a given slope of the damping coefficient.

Automatic Feedrate Adjustment for 2D Profile Milling (2차원 윤곽가공에서 이송률 자동 조정)

  • 고기훈;서정철;최병규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.175-183
    • /
    • 2000
  • Proposed in this paper is a model-bated AFA (automatic feedrate-adjustment) method for maintaining smooth cutting-loads (i.e., cutting-force) during 2D-profile milling. Before the cutting-force model was established, some assumptions were verified through a series of preliminary cutting experiments (The results found that the curving-force was independent of the cutting speed and the cutting action at the cutter bosom). From the data obtained during the main cutting experiments, a “chip-load/cutting-force model”representing the cutting-force as a function of the chip-load (i.e., effective cutting-depth) and a feedrate is proposed. Based on the model. an AFA scheme for maintaining smooth cutting-force by adjusting the feedrate (i.e., F-code) according to the changes in chip-load was proposed. To check the validity of the proposed AFA scheme. another set of cutting experiments was conducted by using feedrate-adjusted NC-data while monitoring the actual machining processes using an accelerometer. The experimental results showed that the proposed AFA-scheme was quite effective.

  • PDF

Impact Responses of Two Colliding Bodies Considering Sensor Dynamics (센서 동역학을 고려한 충돌체간의 충격응답)

  • 류봉조;안길영;권병희;송오섭;이종원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.394-401
    • /
    • 2004
  • This paper presents a study on the analysis of impact responses taking into account sensor dynamics. The contact force between impacting bodies is modelled by using Hertz force-displacement law and linear damping function. Since the real impact force and acceleration at the contact surface of two colliding bodies are measured indirectly by the sensors, the measured outputs can be a little different from the real impact responses. Therefore, in this study, the importance of consideration of sensor dynamics in the impact problems of two colliding bodies is emphasized. In order to verify the appropriateness of the proposed contact force model, the drop type impact test using two kinds of sensors is carried out. Through the numerical analysis and experiment, the effect of sensor dynamics and characteristics on the contact force model is investigated.

CONTACT FORCE MODEL FOR A BEAM WITH DISCRETELY SPACED GAP SUPPORTS AND ITS APPROXIMATED SOLUTION

  • Park, Nam-Gyu;Suh, Jung-Min;Jeon, Kyeong-Lak
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.447-458
    • /
    • 2011
  • This paper proposes an approximated contact force model to identify the nonlinear behavior of a fuel rod with gap supports; also, the numerical prediction of interfacial forces in the mechanical contact of fuel rods with gap supports is studied. The Newmark integration method requires the current status of the contact force, but the contact force is not given a priori. Taylor's expansion can be used to predict the unknown contact force; therefore, it should be guaranteed that the first derivative of the contact force is continuous. This work proposes a continuous and differentiable contact force model with the ability to estimate the current state of the contact force. An approximated convex and differentiable potential function for the contact force is described, and a variational formulation is also provided. A numerical example that considers the particularly stiff supports has been studied, and a fuel rod with hardening supports was also examined for a realistic simulation. An approximated proper solution can be obtained using the results, and abrupt changes from the contacting state to non-contacting state, or vice versa, can be relieved. It can also be seen that not only the external force but also the developed contact force affects the response.

Investigation of Mental Models about Tide for Scientifically Talented Middle School Students by Analyzing Facet of Conceptual Types by Context (상황에 따른 개념 유형의 국면 분석을 통한 중학교 과학 영재아들의 조석에 관한 정신모형 탐색)

  • Lee, Ki-Young
    • Journal of the Korean earth science society
    • /
    • v.27 no.1
    • /
    • pp.6-14
    • /
    • 2006
  • The study investigates mental models of scientifically gifted, middle school students when it comes to tides. This was done by analyzing facet of conceptual types for two contexts. We carried out two performance tasks of tide with different context. A large number of students showed different conceptual types by context. As a result of analyzing facet of conceptual types by context, there was a slight difference in content-specific facet, but a remarkable one in strategic facet. We classified four mental models about tide by configuring facets of conceptual types: (1) Tide model (2) Force model (3) Phase model (4) Hybrid model. The Tide model is scientifically accepted model, but Force model and Phase model are incorrect models, and Hybrid model is mixed model. In cases of Force model and Phase model, conceptual types concur with each other, but these types of students comprehend tides as a result of joined forces of Moon & Sun and phase change of Moon, respectively. Arranging low mental models in proportional order, Tide model (45.0%), Hybrid model (30.0%), Force model (12.5%), and Phase model (7.5%).

A PHOTOELASTIC ANALYSIS OF STRESS DISTRIBUTIONS AROUND FIVE DIFFERENT TYPES OF ENDOSSEOUS IMPLANTS ACCORDING TO THEIR STRUCTURES (5종 골내 임플란트의 구조에 따른 주위의 응력분산에 관한 광탄성학적 연구)

  • Lee Jeong-Nam;Cho Sung-Am
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.643-659
    • /
    • 1993
  • This study was performed for the purpose of evaluating the stress distributions around five different types of implants according to their structures. The stress distribution around the surrounding bone was analysed by two-dimensional photoelastic method. Five epoxy resin models were made, and vertical and lateral forces were applied to the models. A circular polariscope was used to record the isochromatic fringes. The results of this study were summerized as follows : 1. Threaded type implants showed more even stress distribution patterns than cylinderical type implants when vertical and lateral forces were applied. 2. The stress concentrated patterns were observed at the neck portion and middle portion of the cylindrical type implants comparing with threaded type implants when vertical force was applied. 3. Model 1 and model 4 which are tthreaded type implants showed similar stress distribution patterns at the middle and apical portions and more stress was concentrated at the neck porion of model 1 comparing with model 4 when vertical force was applied. The stresses around model 1 were more evenly distributed when lateral force was applied. 4. More stress was concentrated at the neck and middle portion of cylindrical type implants than threaded type implants when lateral force was applied. 5. Model 1 showed the most even stress distribution patterns when lateral force was applied and stress distribution did no occured at the apical portion of modedl 2 when lateral force was applied. 6. There were almost no differences in stress concentrated patterns with or without having hollow design. And the stress concentrated patterns were observed at the corner of apex in model 5 which has hollow design when vertical force was applied.

  • PDF

Modeling Method for the Force and Deformation Curve of Energy Absorbing Structures to Consider Initial Collapse Behaviour in Train Crash (열차 충돌에너지 흡수구조의 초기붕괴특성을 고려하기 위한 하중-변형 곡선 모델링 방법)

  • Kim, Joon-Wo;Koo, Jeong-Seo;Lim, Jong-Soon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.116-126
    • /
    • 2010
  • The Korean rolling stock safety regulation stipulates that the collision deceleration of a car body should be maintained under average 5g and maximum 7.5g during train collisions. One-dimensional dynamic model of a full rake train, which is made up of nonlinear springs/bars-dampers-masses, is often used to estimate the collision decelerations of car bodies in a basic design stage. By the way, the previous studies have often used some average force-deformation curve for energy absorbing structures in rolling stock. Through this study, we intended to analyse how much the collision deceleration levels are influenced by the initial peak force modeling in the one-dimensional force-deformation curve. The numerical results of the one-dimensional dynamic model for the Korean High-Speed Train show that the initial peak force modeling gives significant effect on the collision deceleration levels. Therefore the peak force modeling of the force-deformation curve should be considered in one-dimensional dynamic model of a full rake train to evaluate the article 16 of the domestic rolling stock safety regulations.

Investigation of Mental Models about Tide for Scientifically Talented Middle School Students by Analyzing Facet of Conceptual Types by Context (상황에 따른 개념 유형의 국면 분석을 통한 중학교 과학 영재아들의 조석에 관한 정신모형 탐색)

  • Lee, Gi-Yeong
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.254-262
    • /
    • 2005
  • 본 연구에서는 중학교 과학 영재아들이 가지고 있는 조석에 관한 정신모형을 탐색하기 위하여 상황에 따른 개념 유형을 분류하고, 각 유형들을 구성하는 국면들을 분석하였다. 조석 현상에 관해 두 가지 상황으로 구성된 과제 수행을 실시한 후 그 응답 결과를 분석한 결과, 상당수의 학생들이 상황에 따라 서로 다른 개념 유형을 나타내었다. 상황에 따른 개념 유형들을 구성하고 있는 국면을 분석한 결과, 각 유형들은 내용-일반적 국면을 공통적으로 포함하고 있었으나, 내용-특정적 국면과 전략적 국면에서는 많은 차이를 나타내었다. 두 가지 상황에서 나타나는 개념 유형들과 이들 유형을 구성하는 국면들을 조합하여 학생들의 정신모형을 분석한 결과 다음과 같은 4가지 모형으로 나눌 수 있었다: (1) Tide model (2) Force model (3) Phase model (4) Hybrid model. Tide model은 과학적으로 옳은 모형이며, Force model과 Phase model은 옳지 않은 모형이며, Hybrid model은 혼합 모형으로 상황에 따라 나타나는 개념 유형이 서로 부합되지 않는 모형이다. 중학교 과학 영재아들이 조석 현상에 대해 가장 많이 가지고 있는 모형은 Tide model(45.0%)이었으며, 그 다음으로는 Hybrid model(30.0%), Force model(12.5%), Phase model(7.5%) 순으로 나타났다.

  • PDF

A Thrombus Growth Model Based on Level Set Methods

  • Ma, Chaoqing;Gwun, Oubong
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.137-142
    • /
    • 2016
  • In this paper, a multi-scale model is applied to the simulation of thrombus growth. This model includes macroscale model and microscale model. The former is used to model the plasma flow with Navier-Stokes equations, and the latter is used to model the platelets adhesion and aggregation, thrombus motion, and the surface expansion of thrombus. The force acting on platelets and thrombus from plasma is modeled by the drag force, and the forces from biochemical reactions are modeled by the adhesion force and the aggregation force. As more platelets are merged into the thrombus, the thrombus surface expands. We proposed a thrombus growth model for simulating the expansion of thrombus surface and tracking the surface by Level Set Methods. We implemented the computational model. The model performs well, and the experimental results show that the shape of thrombus in level set expansion form is similar with the thrombus in clinical test.

Coupled foot-shoe-ground interaction model to assess landing impact transfer characteristics to ground condition

  • Kim, S.H.;Cho, J.R.;Choi, J.H.;Ryu, S.H.;Jeong, W.B.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.75-90
    • /
    • 2012
  • This paper investigates the effects of sports ground materials on the transfer characteristics of the landing impact force using a coupled foot-shoe-ground interaction model. The impact force resulting from the collision between the sports shoe and the ground is partially dissipated, but the remaining portion transfers to the human body via the lower extremity. However, since the landing impact force is strongly influenced by the sports ground material we consider four different sports grounds, asphalt, urethane, clay and wood. We use a fully coupled 3-D foot-shoe-ground interaction model and we construct the multi-layered composite ground models. Through the numerical simulation, the landing impact characteristics such as the ground reaction force (GRF), the acceleration transfer and the frequency response characteristics are investigated for four different sports grounds. It was found that the risk of injury, associated with the landing impact, was reduced as the ground material changes from asphalt to wood, from the fact that both the peak vertical acceleration and the central frequency monotonically decrease from asphalt to wood. As well, it was found that most of the impact acceleration and frequency was dissipated at the heel, then not much changed from the ankle to the knee.