• Title/Summary/Keyword: 5'-GMP

Search Result 278, Processing Time 0.022 seconds

Fermentative Production of 5'-GMP from 5'-XMP by XMP aminase and ATP-generation System of Saccharomyces cerevisiae (효모 Saccharomyces cevevisiae의 ATP 생성계와 XMP aminase에 의한 5'-XMP로부터 5'-GMP 발효생산)

  • Cho, Jung-Il
    • The Korean Journal of Mycology
    • /
    • v.21 no.4
    • /
    • pp.285-292
    • /
    • 1993
  • For the enzymatic conversion of 5'-XMP to 5'-GMP, partially purified XMP aminase from Escherichia coli was coupled with the yeast, Saccharomycrs cerevisiae, capable of ATP regeneration through glycolytic pathway. In order to elevate the level of XMP aminase in E. coli, $guaB^{-}(IMP\;dehydrogenase-less)$ mutant were introduced, and the yeast used as ATP supplier was treated by some method to increase its membrane permeability. The optimum conditions for efficient conversion reaction by energy-coupled system were investigated. As the results, a CH 41, $guaB^-$ mutant of E. coli K-12, showed 2.75 fold increase in the level of XMP aminase, compared with its parent cell. And the lyophylized yeast was the most effective at the ATP supplier. The optimum temperature and pH of conversion reaction were $40{\circ]C$ and pH 7.4, and the highest conversion ratio was shown under the reaction condition of 100 mM glucose, 100 mM inorganic phosphate and 6 mM AMP. When 36 units/ml XMP aminase used under the above conditions, the amount of 60 mg/ml yeast was sufficient to be used. Under the optimum condition, 71% of 1.8 mM(65.6 mg/100 ml) 5'-XMP was converted to 5'-GMP within 8 hr.

  • PDF

Identification of Novel Target Proteins of Cyclic GMP Signaling Pathways Using Chemical Proteomics

  • Kim, Eui-Kyung;Park, Ji-Man
    • BMB Reports
    • /
    • v.36 no.3
    • /
    • pp.299-304
    • /
    • 2003
  • For deciphering the cyclic guanosine monophosphate (cGMP) signaling pathway, we employed chemical proteomics to identify the novel target molecules of cGMP. We used cGMP that was immobilized onto agarose beads with linkers directed at three different positions of cGMP. We performed a pull-down assay using the beads as baits on tissue lysates and identified 9 proteins by MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight) mass spectrometry. Some of the identified proteins were previously known cGMP targets, including cGMP-dependent protein kinase and cGMP-stimulated phosphodiesterase. Surprisingly, some of the co-precipitated proteins were never formerly reported to associate with the cGMP signaling pathway. The competition binding assays showed that the interactions are not by nonspecific binding to either the linker or bead itself, but by specific binding to cGMP. Furthermore, we observed that the interactions are highly specific to cGMP against other nucleotides, such as cyclic adenosine monophosphate (cAMP) and 5'-GMP, which are structurally similar to cGMP. As one of the identified targets, MAPK1 was confirmed by immunoblotting with an anti-MAPK1 antibody. For further proof, we observed that the membrane-permeable cGMP (8-bromo cyclic GMP) stimulated mitogen-activated protein kinase 1 signaling in the treated cells. Our present study suggests that chemical proteomics can be a very useful and powerful technique for identifying the target proteins of small bioactive molecules.

Production of Nucleotide by Immobilized Cell (고정화 미생물에 의한 뉴크레오타이드 생산)

  • CHO Jung-Il;JUNG Sung-Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.2
    • /
    • pp.111-116
    • /
    • 1991
  • The effective p.eduction of 5'-GMP(5'-Guanylic acid) by enzymatic conversion of 5'-XMP(5'-Xanthyic acid) was investigated. The Iyophilized Brevibacterium ammoniagenes ATCC 19216 which were used as the XHP aminase source, was immobilized by entrapping in K-carrageenan, agar, polyacrylamide or Ca-alginate. $3\%$ K-carrageenan was selected as the most suitable matrix. In the production of 5'-GMP using the free cells of 3. ammoniagenes ATCC 19216, the optimum conditions were $42^{\circ}C$, PH 7.0, 100mg/ml glucose, 120mg/ml cell ,8mg/ml $MgSO_4\cdot7H_2O$, 5mg/ml POESA, 5mg/ml phytic acid. Under the conditions, $94.5\%$ of 5'-GMP was converted within 8 hours. In the production of 5'-GMP using the immobilized whole cells of B. ammoniagenes ATCC 19216, the optimum conditions were $37^{\circ}C$, pH 7.5, 50mg/ml glucose, 1mg/ml $KH_2PO_4$, 10mg/ml phytic acid, 60mg/ml cell, 8mg/ml $MgSO_4\;\cdot\;7H_2O$, 5mg/ml POESA. Under the conditions, $64.7\%$ of 5'-GMP was converted within 40 hours.

  • PDF

Studies on the Mechanical Activities of Rabbit Myometrium V. Effects of Acetylcholine, Oxytocin and Prostagla, din F2α on Cyclic Nucleotide Levels of Rabbit Whole Uterus (가토 척출 자궁근의 운동성에 관한 연구 V. Acetylcholine, PGF2α 및 Oxytocin의 자궁 수축기전에 관한 연구)

  • Lee, Chang-Eop;Kwun, Jong-Kuk;Lee, Joong-Sup;Yang, Il-Suk;Lee, Mun-Han
    • Korean Journal of Veterinary Research
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 1982
  • The effect of acetylcholine, oxytocin and prostaglandin $F_{2{\alpha}}$ ($PGF_{2{\alpha}}$) on cyclic nucleotide levels in estrogen-primed rabbit whole uterus were studied in the presence and absence of 1-methyl-3-isobutyl xanthine (MIX), a phosphodiestrase inhibitor, and indomethacin, a prostagandin inhibitor. In the absence of MIX, acetylcholine increased guanosine 3', 5'-cyclic monophosphate (cGMP), but had no effect on adenosine 3', 5'-cyclic monophosphate (cAMP) levels. In contrast, oxytocin had no influence on cGMP, but decreased cAMP levels. $PGF_{2{\alpha}}$ increased cGMP and decreased cAMP levels. MIX increased both cAMP and cGMP levels. Oxytocin and $PGF_{2{\alpha}}$ further increased cGMP levels, indicating activation of guanylate cyclase activity. The ratio of cAMP/cGMP was decreased by uterine stinulants both in presence and absence of MIX. Indomethacin elevated cAMP and cGMP revels. The effects of uterine stimulants in the presence of indomethacin on cyclic nucleotide levels were varied from tissue to tisse. In general, oxytocin decreased cGMP and $PGF_{2{\alpha}}$ increased cAMP/cGMP levels, but the effects were statisically nonsignicficant. The cAMP/cGMP ratio was increased by uterine stimulant in the presence of indomethacin. In conclusion, uterine stimulants eased cAMP/cGMP ratio which indicates that the uterine stimulants have opposing effects on adenylate cyclase and guanylate cyclase activities. The endometrium plays a role in the regulation of cyclic nucleotide levels and uterine contraction by means of PG synthesis. Indomethacin has an unknown activities besides both of PG synthetase and phosphodiesterase inhibitions.

  • PDF

Involvement of Crosstalk Between cAMP and cGMP in Synaptic Plasticity in the Substantia Gelatinosa Neurons

  • Kim, Tae-Hyung;Chung, Ge-Hoon;Park, Seok-Beom;Chey, Won-Young;Jun, Sung-Jun;Kim, Joong-Soo;Oh, Seog-Bae
    • International Journal of Oral Biology
    • /
    • v.36 no.2
    • /
    • pp.83-89
    • /
    • 2011
  • Substantia gelatinosa (SG) neurons receive synaptic inputs from primary afferent $A{\delta}$- and C-fibers, where nociceptive information is integrated and modulated by numerous neurotransmitters or neuromodulators. A number of studies were dedicated to the molecular mechanism underlying the modulation of excitability or synaptic plasticity in SG neurons and revealed that second messengers, such as cAMP and cGMP, play an important role. Recently, cAMP and cGMP were shown to downregulate each other in heart muscle cells. However, involvement of the crosstalk between cAMP and cGMP in neurons is yet to be addressed. Therefore, we investigated whether interaction between cAMP and cGMP modulates synaptic plasticity in SG neurons using slice patchclamp recording from rats. Synaptic activity was measured by excitatory post-synaptic currents (EPSCs) elicited by stimulation onto dorsal root entry zone. Application of 1 mM of 8-bromoadenosine 3,5-cyclic monophosphate (8-Br-cAMP) or 8-bromoguanosine 3,5-cyclic monophosphate (8-Br-cGMP) for 15 minutes increased EPSCs, which were maintained for 30 minutes. However, simultaneous application of 8-BrcAMP and 8-Br-cGMP failed to increase EPSCs, which suggested antagonistic cross-talk between two second messengers. Application of 3-isobutyl-1-methylxanthine (IBMX) that prevents degradation of cAMP and cGMP by blocking phosphodiesterase (PDE) increased EPSCs. Co-application of cAMP/cGMP along with IBMX induced additional increase in EPSCs. These results suggest that second messengers, cAMP and cGMP, might contribute to development of chronic pain through the mutual regulation of the signal transduction.

Influence of Water Soluble Polymers on Crystallization of 5-Guanosine Monophosphate (구아노신일인산의 결정화에 대한 수용성 고분자의 영향)

  • Lee, Min-Kyung;Choi, Hye-Min;Kim, Woo-Sik;Hong, Jong-Pal;Lee, Jong-Hwi
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.124-130
    • /
    • 2009
  • In presence of a polymer, the crystallization of low MW organic materials can be stopped at an intermediary step, where mesocrystals can be identified. A mesocrystal is defined as a superstructure of nanoparticles having polymer-adsorbed crystal faces on the scale of several hundred nanometers to micrometers. This study examined the effects of water soluble polymers and relevant parameters on the formation of guanosine-5'-monophosphate mesocrystals. It was observed in OM and SEM that GMP obtained in a polymer solution had a unique particle morphology different from the typical one of GMP. XRD analysis indicated that the polymer-directed crystallized GMP had a different polymorph of GMP. This result shows that the crystal structure of GMP can be changed by polymers. It was observed in TGA analysis that the polymer-directed crystallized GMP had a different water content, indicating a different type of hydrate.

Activation of the cGMP/Protein Kinase G Pathway by Nitric Oxide Can Decrease TRPV1 Activity in Cultured Rat Dorsal Root Ganglion Neurons

  • Jin, Yun-Ju;Kim, Jun;Kwak, Ji-Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.3
    • /
    • pp.211-217
    • /
    • 2012
  • Recent studies have demonstrated that nitric oxide (NO) activates transient receptor potential vanilloid subtype 1 (TRPV1) via S-nitrosylation of the channel protein. NO also modulates various cellular functions via activation of the soluble guanylyl cyclase (sGC)/protein kinase G (PKG) pathway and the direct modification of proteins. Thus, in the present study, we investigated whether NO could indirectly modulate the activity of TRPV1 via a cGMP/PKG-dependent pathway in cultured rat dorsal root ganglion (DRG) neurons. NO donors, sodium nitroprusside (SNP) and S-nitro-N-acetylpenicillamine (SNAP), decreased capsaicin-evoked currents ($I_{cap}$). NO scavengers, hemoglobin and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO), prevented the inhibitory effect of SNP on $I_{cap}$. Membrane-permeable cGMP analogs, 8-bromoguanosine 3', 5'-cyclic monophosphate (8bromo-cGMP) and 8-(4chlorophenylthio)-guanosine 3',5'-cyclic monophosphate (8-pCPT-cGMP), and the guanylyl cyclase stimulator YC-1 mimicked the effect of SNP on $I_{cap}$. The PKG inhibitor KT5823 prevented the inhibition of $I_{cap}$ by SNP. These results suggest that NO can downregulate the function of TRPV1 through activation of the cGMP/PKG pathway in peripheral sensory neurons.

Effects of Protein Kinase G on Phospholipase D Activity of Human Neutrophils (호중구에서 phospholipase D의 활성에 대한 protein kinase G의 영향)

  • 박지연;이민정;장민정;이선영;배외식;곽종영
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.903-910
    • /
    • 2003
  • Phospholipase D (PLD) plays an important role as a signaling molecule in the activation of neutrophils. In this study, effect of nitric oxide (NO) and cGMP on the activation of PLD in human neutrophils was investigated. Sodium nitroprusside (SNP), an agent to produce NO spontaneously in cells, alone increased PLD activity and the maximal activation was obtained with 0.5 mM SNP. Dibutyryl-cAMP, an agent to increase an intracellular cAMP concentration inhibited formyl-Met-Leu-Phe (fMLP)-stimulated PLD activity but 8-bromo-cGMP (300 $\mu$M), an agent to increase an intracellular cGMP concentration did not affect basal and fMLP-stimulated PLD activity. NO-induced activation of PLD was not blocked by KT 5823, an inhibitor of cGMP-dependent protein kinase (PKG), suggesting that NO-induced PLD activation is not mediated by cGMP. NO also stimulated p38 mitogen activated protein kinase (MAPK) in human neutrophils, indicated by increased phosphorylation of p38 MAPK in Western blotting. NO-induced phosphorylation of p38 MAPK was not inhibited by KT 5823 or n-butanol. RhoA, an regulatory factor of PLD activation was trans-located from cytosolic fraction to plasma membranes by fMLP or phorbol ester, and fMLP-stimulated but not phorbol ester-stimulated translocation of RhoA was inhibited by cGMP. These results suggest that NO stimulates PLD activity through other unidentified facto.(s) than cGMP even though cGMP inhibits the artivation of RhoA.

Modulation of $Ca^{2+}-Activated$ Potassium Channels by cGMP-Dependent Signal Transduction Mechanism in Cerebral Arterial Smooth Muscle Cell of the Rabbit

  • Han, Jin;Kim, Na-Ri;Lee, Kwang-Bok;Kim, Eui-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.445-453
    • /
    • 2000
  • The present investigation tested the hypothesis that the activation of protein kinase G (PKG) leads to a phosphorylation of $Ca^{2+}-activated$ potassium channel $(K_{Ca}\;channel)$ and is involved in the activation of $K_{Ca}$ channel activity in cerebral arterial smooth muscle cells of the rabbit. Single-channel currents were recorded in cell-attached and inside-out patch configurations of patch-clamp techniques. Both molsidomine derivative 3-morpholinosydnonimine-N-ethylcarbamide $(SIN-1,\;50\;{\mu}M)$ and 8-(4-Chlorophenylthio)-guanosine-3',5'-cyclic monophosphate $(8-pCPT-cGMP,\;100\;{\mu}M),$ a membrane-permeable analogue of cGMP, increased the $K_{Ca}$ channel activity in the cell-attached patch configuration, and the effect was removed upon washout of the drugs. In inside-out patches, single-channel current amplitude was not changed by SIN-1 and 8-pCPT-cGMP. Application of ATP $(100\;{\mu}M),$ cGMP $(100\;{\mu}M),$ ATP+cGMP $(100\;{\mu}M\;each),$ PKG $(5\;U/{\mu}l),$ ATP $(100\;{\mu}M)+PKG\;(5\;U/{\mu}l),$ or cGMP $(100\;{\mu}M)+PKG\;(5\;U/{\mu}l)$ did not increase the channel activity. ATP $(100\;{\mu}M)+cGMP\;(100\;{\mu}M)+PKG\;(5\;U/{\mu}l)$ added directly to the intracellular phase of inside-out patches increased the channel activity with no changes in the conductance. The heat-inactivated PKG had no effect on the channel activity, and the effect of PKG was inhibited by 8-(4-Chlorophenylthio)-guanosine-3',5'-cyclic monophosphate, Rp-isomer $(Rp-pCPT-cGMP,\;100\;{\mu}M),$ a potent inhibitor of PKG or protein phosphatase 2A (PP2A, 1 U/ml). In the presence of okadaic acid (OA, 5 nM), PP2A had no effect on the channel activity. The $K_{Ca}$ channel activity spontaneously decayed to the control level upon washout of ATP, cGMP and PKG, and this was prevented by OA (5 nM) in the medium. These results suggest that the PKG-mediated phosphorylations of $K_{Ca}$ channels, or some associated proteins in the membrane patch increase the activity of the $K_{Ca}$ channel, and the activation may be associated with the vasodilating action.

  • PDF

Degradation of Nucleotides and Their Related Compounds During the Fermentation of Oyster (굴젓 숙성중(熟成中) 핵산(核酸) 관련물질(關聯物質)의 변화(變化))

  • Sung, Nak-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.7 no.2
    • /
    • pp.1-6
    • /
    • 1978
  • Changes of nucleotides and their related compounds during the fermentation of oyster were analyzed by high speed liquid chromatography. In raw oyster, dominant 5'-UMP was $26.1{\mu}mole/g$ and the content of uracil, hypoxanthine, 5'-GMP were 5.2, 3.8, 2.8 and $2.7{\mu}mole/g$ on moisture and salt free base, respectively. The content of cytosine, 2',3'-CMP, 5'-AMP and 2',3'-GMP were lower than $1.0{\mu}mole/g$ and guanine were detected in trace amount. 5'-UMP, uracil, hypoxanthine, 5'-IMP and 5'-GMP were abundant in both raw sample and fermented products. 5'-UMP and 5'-IMP were decreased slowly while 5'-AMP, 2'3'-CMP, cytosine and guanine were increased during the fermentation, and the increase of 5'-GMP and uracil were fluctuated. The content of hypoxanthine in raw oyster was increased to 3.1, 4.2 and 7.7 times of raw sample after 19, 36 and 68 days of fermentation, respectively.

  • PDF