• 제목/요약/키워드: 4d transition metal

검색결과 77건 처리시간 0.024초

Magnetic Properties of Transition Metal Monolayers on Ta(001) Surfaces

  • Youn, S.J.;Hong, S.C.
    • Journal of Magnetics
    • /
    • 제13권4호
    • /
    • pp.140-143
    • /
    • 2008
  • The magnetic and structural properties of transition metal (Mn, Fe, Co) monolayers on Ta(001) surfaces are investigated theoretically by using the first principles full-potential linearized augmented plane wave method. Mn and Fe monolayers become ferromagnetic on Ta(001) surfaces while Co monolayers becomes non-magnetic. The paramagnetism of Co monolayers is explained by the Stoner theory of magnetism. The magnetic coupling of a transition metal overlayer with a substrate is ascribed to the orbital hybridization between the s and d orbitals of the transition metal.

Effect of Valence Electron Concentration on Elastic Properties of 4d Transition Metal Carbides MC (M = Y, Zr, Nb, and Rh)

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.2171-2175
    • /
    • 2013
  • The electronic structure and elastic properties of the 4d transition metal carbides MC (M = Y, Zr, Nb, Rh) were studied by means of extended H$\ddot{u}$ckel tight-binding band electronic structure calculations. As the valence electron population of M increases, the bulk modulus of the MC compounds in the rocksalt structure does not increase monotonically. The dominant covalent bonding in these compounds is found to be M-C bonding, which mainly arises from the interaction between M 4d and C 2p orbitals. The bonding characteristics between M and C atoms affecting the variation of the bulk modulus can be understood on the basis of their electronic structure. The increasing bulk modulus from YC to NbC is associated with stronger interactions between M 4d and C 2p orbitals and the successive filling of M 4d-C 2p bonding states. The decreased bulk modulus for RhC is related to the partial occupation of Rh-C antibonding states.

2차원 층상구조 전이금속칼코젠의 반도체-도체 구조상전이 기반 응용 기술 (Applications of metal-semiconductor phase transition in 2D layered transition metal dichalcogenides)

  • 조수연;김세라;석진봉;양희준
    • 진공이야기
    • /
    • 제3권1호
    • /
    • pp.4-8
    • /
    • 2016
  • Motivated by two dimensional graphene, layered transition metal dichalcogenides (TMDs) have attracted scientific interests by their diverse electronic, optical and catalytic properties. In particular, group 6 TMDs such as $MoS_2$ and $MoTe_2$ have polymorphs (with metallic octahedral and semiconducting hexagonal phases) which are not present in graphene. Here, we introduce a new concept in 2D materials' studies, structural phase transition, with group 6 TMDs and its current research trend and applications for electric device and electrochemical catalyst.

수용액에서 NTOE, NDOE가 결합된 Merrifield 수지를 이용한 Ag(I)의 흡착 및 분리 특성 (Adsorption and Separation of Ag(I) Using a Merrifield Resin Bound NTOE, NDOE in Aqueous Solution)

  • 이철규;김해중
    • 분석과학
    • /
    • 제12권2호
    • /
    • pp.159-165
    • /
    • 1999
  • 수용액에서 1,12-diaza-3,4:9,10-dibenzo-5,8-dioxacyclopentadecane(NTOE)가 결합된 merrifield 수지와 1,12,15-triaza-3,4:9,10-dibenzo-5,8-dioxacycloheptadecane(NDOE)가 결합된 merrifield 수지를 이용한 전이금속이온들의 흡착 및 분리특성을 조사하였다. 전이금속이온들의 흡착정도(adsorption degree, E)와 분포비(distribution ratio, D)의 순위는 동일하게 Cu(II)$t_R$)이 흡착정도와 분포비에 의해서 영향을 받았으며, 이러한 흡착 및 분리 실험 결과로부터 혼합금속용액에서 Ag(I)의 분리가능성을 확인할 수 있었다.

  • PDF

Magnetic Properties of Carbon Chains Doped with 4d Transition Metals

  • Jang, Y.R.;Lee, J.I.
    • Journal of Magnetics
    • /
    • 제13권1호
    • /
    • pp.7-10
    • /
    • 2008
  • The structural and magnetic properties of functionalized carbon chains doped with 4d transition metals, such as Ru, Rh, and Pd, were investigated using the full-potential linearized augmented plane wave (FLAPW) method. The carbon nanowire doped with Ru exhibited a ferromagnetic ground state with a sizable magnetic moment, while those doped with Rh and Pd had nonmagnetic ground states. For the Ru-doped chain, the density of states at the Fermi level showed large spin polarization, which suggests that the doped nanowire could be used for spintronic applications.

각도분해 광전자 분광법을 이용한 2차원 전이금속 칼코겐 화합물의 전자구조 연구 (Investigation on 2D Transition Metal Chalcogenide Using Angular-Resolved Photoelectron Spectroscopy)

  • 박수형
    • 세라미스트
    • /
    • 제22권4호
    • /
    • pp.350-356
    • /
    • 2019
  • Recently, transition metal dichalcogenide (TMDC) monolayers have been the subject of research exploring the physical phenomenon generated by low dimensionality and high symmetry. One of the keys to understanding new physical observations is the electronic band structure of 2D TMDCs. Angle-resolved photoelectron spectroscopy (ARPES) is, to this point, the best technique for obtaining information on the electronic structure of 2D TMDCs. However, through ARPES research, obtaining the long-range well-ordered single crystal samples always proves a challenging and obstacle presenting issue, which has been limiting towards measuring the electronic band structures of samples. This is particularly true in general 2D TMDCs cases. Here, we introduce the approach, with a mathematical framework, to overcome such ARPES limitations by employing the high level of symmetry of 2D TMDCs. Their high symmetry enables measurement of the clear and sharp electronic band dispersion, which is dominated by the band dispersion of single-crystal TMDCs along the two high symmetry directions Γ-K and Γ-M. In addition, we present two important studies and observations for the direct measuring of the exciton binding energy and charge transfer of 2D TMDCs, both being established by the above novel approach.