• Title/Summary/Keyword: 4WS Steering

Search Result 42, Processing Time 0.029 seconds

Modeling & Dynamic Analysis for Four Wheel Steering Vehicles (4WS 차량의 모델링 및 동적 해석)

  • Jang, J.H.;Jeong, W.S.;Han, C.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.66-78
    • /
    • 1995
  • In this paper, we address vehicle modeling and dynamic analysis of four wheel steering systems (4WS). 4WS is one of the devices used for the improvement of vehicle maneuverability and stability. All research done here is based on a production vehicle from a manufacturer. To study actual system response, a three dimensional, full vehicle model was created. In past research of this type, simple, two dimensional, bicycle vehicle models were typically used. First, we modelled and performed a dynamic analysis on a conventional two wheel steering(2WS) vehicle. The modeling and analysis for this model and subsequent 4WS vehicles were performed using ADAMS(Automatic Dynamic Analysis of Mechanical Systems) software. After the original vehicle model was verified with actual experiment results, the rear steering mechanism for the 4WS vehicle was modelled and the rear suspension was changed to McPherson-type forming a four wheel independent suspension system. Three different 4WS systems were analyzed. The first system applied a mechanical linkage between the front and rear steering mechanisms. The second and third systems used, simple control logic based on the speed and yaw rate of the vehicle. 4WS vehicle proved dynamic results through double lane change test.

  • PDF

A Study on the 4WS Control Method with the Effect of Steering Wheel Angular Velocity (핸들조향속도를 고려한 4WS 제어방법에 관한 연구)

  • 이영화;김석일;김대영;김동룡
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.168-175
    • /
    • 1996
  • Except the collision avoidance performance related to the rapid lane change, the 4WS vehicle has better dynamic stability and handling performance than the conventional 2WS vehicle which has close relation with the driver's safety, a 4WS conrol method with the effect of steering wheel angular velocity is proposed based on the fact that the driver steers abruptly the steering wheel to avoid the collision. And the effects of the proposed 4WS control method are investigated on the dynamic stability and handling performance by using the ISO lane change test code.

  • PDF

A Study on Independent Steering & Driving Control Algorithm for 6WS/6WD Vehicle (6WS/6WD 차량의 독립조향 및 구동 제어알고리즘에 관한 연구)

  • Kim, Chang-Jun;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.313-320
    • /
    • 2011
  • Multi-axle driving vehicles that are used in special environments require high driving performance, steering performance, and stability. Among these vehicles, 6WS/6WD vehicles with middle wheels have structural safety by distributing the load and reducing the pitch angle during rapid acceleration and braking. 6WS/6WD vehicles are favored for military use in off road operations because of their high maneuverability and mobility on extreme terrains and obstacles. 6WD vehicles that using in-wheel motor can generate the independent wheel torque without other mechanical parts. Conventional vehicles, however, cannot generate an opposite driving force at each side wheel. Using an independent steering and driving system, six-wheel vehicles can show better performance than conventional vehicles. Using of independent steering and driving system, the 6 wheel vehicle can improve a performance better than conventional vehicle. This vehicle enhances the maneuverability under low speed and the stability at high speed. This paper describes an independent 6WS/6WD vehicle, consists of three parts; Vehicle Model, Control Algorithm for 6WS/6WD and Simulation. First, vehicle model is application of TruckSim software for 6WS and 6WD. Second, control algorithm describes the optimum tire force distribution method in view of energy saving. Last is simulation and verification.

Effect of four-wheel steering system on vehicle handling characterisitcs (4륜 조향시스템이 차량의 주행역학적 특성에 미치는 영향)

  • 심정수;허승진;유영면
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.21-29
    • /
    • 1990
  • Equipments of passenger cars with modern technologies are gaining their importance. Related with such developments, the four-wheel steering system (4WS) was introduced recently to a few passenger cars in the market. The most important research goal on this new steering system is improvement of active safety, in other words, improvement of handling characteristics of vehicle stability and maneuverability. This paper presents a computer-based study about the effects of 4WS system on the vehicle handling characteristics. A simple bicycle model of 2 d.o.f. is used for the development of four wheel control algorithms of 4WS system, and the rear wheel control strategies are applied to a complex vehicle model of 16 d.o.f. for simulation of selected ISO-driving tests. The 4WS systems, which reduce the sideslip angle at the mass center of vehicle to almost zero, show much improved handling characteristics compared to that of the conventional 2WS system. These 4WS systems, however, result in vehicles with eigen-steer characteristics of extreme understeer behaviour.

  • PDF

Development of Loader Equipped with 4Wd and 4WS (II) (4WS System and Construction of Loader) (4WD 및 4WS이 가능한 로더 개발 (II) (4륜 조향장치 및 로더 구성))

  • 조현덕
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.150-157
    • /
    • 1999
  • In this study, the loader was completed that has 4-wheel gear driven drivetrain of study (Ⅰ), the 4-wheel steering with power wheel type, all-wheel traction system, and joy-stick type lever for hydraulic control valve. From driving test of the developed 4WD and 4WS type loader, we obtained that the minimum circling radius and the necessary width in circling motion reduced about 40% and 33% compared with 2WS type loader. Also, all-wheel traction system could keep the tires glued to the ground with greater stability, the power steering allowed a smoother operation, and the joy-stick type lever offered easily to control. Thus, the developed loader having these functions was very fit in a small cattle shed or rugged ground.

  • PDF

Dynamic Performance Analysis for 4WD/4WS Electric-driven Vehicles (4WD/4WS 전기 구동 차량의 동역학적 성능 해석)

  • 김준영;계경태;박건선;허건수;장경영;오재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.209-220
    • /
    • 1996
  • In this paper, dynamic performance of 4WD/4WS Electric-driven vehicles is investigated. A coupled dynamic model is introduced for longitudinal, lateral and yawing motion of 4WD/4WS vehicles. Based on the coupled model, dynamic performance is analyzed for steady-state steering, acceleration steering and brake steering, respectively. These non steady-state cornering analysis is important for non-paved road maneuvering, trajectory projection for armored vehicle and future AVCS(Advanced Vehicle Control System) technology. Simulation results are obtained based on a simulink module for the introduced model.

  • PDF

Characteristics of the Proportional Pressure Control Valve for 4 Wheel Steering System on the Passenger Car (승용차 4륜 조향(4WS) 장치용 비례 압력 제어 밸브의 특성에 관한 연구)

  • 오인호;장지성;이일영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.87-96
    • /
    • 1996
  • The proportional pressure control valve(PCV) is an essential component in the open loop controlled rear wheel steering gear of the four wheel steering(4WS) system on the passenger car. The valve should have versatile functions and higher performance. But, it is hard to find the proportional pressure control valve suitable for the 4WS system. In this paper, the determination of the valve parameters was studied by the stability discrimination and the characteristic analysis for the purpose of the development of a new PCV for the 4WS. The mathematical model of the valve was derived from the valve-cylinder system and the programme for numerical computation was developed. The transfer function of the system was obtained from the mathematical model. The characteristics of the valve were inspected through the experiment and compared to those obtained by numerical method. And then the stability discrimination of the system was done by root locus and the analysis of characteristics was done by the developed programme. From the experiment and the analysis of characteristics was done by the developed programme. From the experiment and the inspection, the appropriation of mathematical model and the usefulness of the programme were confirmed. And the parameters which might affect the performance of the valve can be determined by considering the stability discrimination, the characteristics analysis and required functions.

  • PDF

development of Loader Equipped with 4WD and 4WS (I) (4 Wheel Driving Transmission) (4WD 및 4WS이 가능한 로더 개발(I) (4륜 구동 변속기))

  • 조현덕
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.141-148
    • /
    • 1998
  • A loader is construction & road or agricultural machinery for lifting, moving, and mixing. This study deals with the agricultural mini loader for stock raising farming. The performance of the machine is established by pulling power, working lifting capacity, and minimum circling radius, etc. Also, driving easiness and endurance are very important in manufacturing. Thus, this study has developed the loader with the 4-wheel driving equipment by gear transmission, the 4-wheel steering equipment by power handle steering type, and the equipment making four wheels touch simultaneously on the rugged ground. The developed loader having these functions was very fit in a small cattle shed or a rugged ground. This study is divided into two parts; (I) development of 4WS transmission and (II) construction of the loader by 4WS system and other equipments.

  • PDF

A Study on Lateral Stability Enhancement of 4WS Vehicle with Active Front Wheel Steer System (능동전륜조향장치를 채택한 사륜조향차량의 횡방향 안정성 강화에 대한 연구)

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.15-20
    • /
    • 2012
  • This study is to propose and develop an integrated dynamics control system to improve and enhance the lateral stability and handling performance. To achieve this target, we integrate an AFS and a 4WS systems with a fuzzy logic controller. The IDCS determines active additional steering angle of front wheel and controls the steering angle of rear wheel. The results show that the IDCS improves the lateral stability and controllability on dry asphalt and snow paved road when double lane change and step steering inputs are applied. Yaw rate of the IDCS vehicle tracks reference yaw rate very well and body slip angle is reduced about by 50%. Response time of the IDCS vehicle is also decreased.

A Study on Integrated Control System Design of Active Rear Wheel Steering and Yaw-Moment Control Systems (능동 후륜조타와 요우 모멘트의 협조제어에 관한 연구)

  • Park, J.H.;Pak, J.W.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.57-63
    • /
    • 2004
  • Conventionally, 2WS is used for vehicle steering, which can only steering front wheel. In case of trying to high speed lane change or cornering through this kind of vehicle equipped 2WS, it may occur much of Yaw moment. On the other hand, 4WS makes decreasing of Yawing Moment, outstandingly, so it is possible to support vehicle movement stable. And conventional ABS and TCS can only possible to control the longitudinal movement of braking equipment and drive which can only available to control of longitudinal direction. There after new braking system ESP was developed, which controls both of longitudinal and lateral, with adding of the function of controlling Active Yaw Moment. On this paper, we show about not only designing of improved braking and steering system through establishing of the integrated control system design of 4WS and ESP but also designing of the system contribute to precautious for advanced vehicle stability problem.

  • PDF