• Title/Summary/Keyword: 4SID

Search Result 121, Processing Time 0.025 seconds

Use of selegiline in 3 Cases of Canine Pituitary-dependent Hyperadrenocorticism (개의 뇌하수체 의존성 부신 피질 기능 항진증에서의 selegiline 적용)

  • 김주민;황철용;윤정희;윤화영;한홍율
    • Journal of Veterinary Clinics
    • /
    • v.19 no.4
    • /
    • pp.455-460
    • /
    • 2002
  • Pituitary-dependent hyperadrenocorticism (PDH) was diagnosed with history taking, physical examination, complete blood count, serum chemistry profiles, abdominal radiology, ultrasonography and adrenal function tests in 3 dogs. Their clinical signs were polyuria, polydipsia, polyphagia, bilateral symmetrical truncal alopecia and secondary infection in skin or urinary tract. Especially one dog showed severe clinical signs such as calcinosis cutis and delayed wound healing. These 3 dogs were diagnosed as PDH, and treated with selegiline 1-2 mg/kg /ay sid PO. 2 dogs with clinical signs of PDH were disappeared and improved, but 1 dog with severe illness progressed gradually despite of selegiline and mitotane application, and eventually died.

A Study on Chest X-ray Using Ancillary Device for Child Radiography (방사선촬영 보조기구를 이용한 어린이 흉부 엑스선 검사에 관한 연구)

  • Rhee, Do-byung;Lee, Somi;Choi, Hyunwoo;Kim, Jong-ki;Lee, Jongmin
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.48-54
    • /
    • 2018
  • In this study, We developed a Ancillary device for child radiography for X-ray of children under 5 years old and verified its effectiveness. Chest X-rays of children younger than 5 years of age were performed by Supine method at the position of Table detector, Short - Source to Image Receptor Distance(SID). Existing Supine and Short -SID imaging methods cause many problems, such as errors in image reading and excessive radiation exposure dose to patients, but the use of an Ancillary device for child radiography(ADCR) solves these problems. A total of 160 children were divided into the Upright group using ADCR and Supine group without ADCR. The chest X-ray image was visually evaluated by two radiologists with reference to the European Commission's List of Quality Criteria for Diagnostic Radiographic Images in Pediatrics. The total score of the qualitative evaluation was 5.15% higher in the chest upright method using ADCR than in the chest supine method without ADCR, and the chest upright method score was higher than that of the chest supine method in items 1 to 7. whether infants have deep inspiration or not, 4.87% higher for item 1, whether infants rotate or not and the degree of tilting, 0% higher for the item 2, the reproduction of image from just above apices of lungs to T12/L1, 0% for the item 3, reproduction of the vascular pattern in central 2/3 of the lungs, 6.92% higher for the item 4, reproduction of the trachea and the proximal bronchi, 12.9% higher for the item 5, visually sharp reproduction of the diaphragm and costo-phrenic angles, 10% higher for the item 6, reproduction of the spine and paraspinal structures and visualisation of the retrocardiac lung and the mediastinum, and 3.65% higher for the item 7. Items 2 and 3 showed no statistically significant differences(P > 0.05), and items 1, 4, 5, 6, and 7 showed statistically significant differences(P < 0.05). In conclusion, Upright method using ADCR in pediatric chest X-ray is considered as a good alternative to existing Supine method.

The adsorption-desorption behavior of strontium ions with an impregnated resin containing di (2-ethylhexyl) phosphoric acid in aqueous solutions

  • Kalal, Hossein Sid;Khanchi, Ali Reza;Nejatlabbaf, Mojtaba;Almasian, Mohammad Reza;Saberyan, Kamal;Taghiof, Mohammad
    • Advances in environmental research
    • /
    • v.6 no.4
    • /
    • pp.301-315
    • /
    • 2017
  • An Amberlite XAD-4 resin impregnated with di(2-ethylhexyl)phosphoric acid was prepared and its adsorption-desorption behaviors with Sr(II) ions under various conditions was examined. The resin was characterized by fourier transform infrared and thermal analysis techniques. The effects contact time, temperature, pH, interfering ions and eluants were studied. Results showed that adsorption of Sr (II) well fitted with pseudo-second-order kinetic model. The equilibrium adsorption data of Sr (II) on the impregnated resin were analyzed by Jossens, Weber-van Vliet, Redlich-Peterson and Fritz-Schlunder models to find out desirable equilibrium condition. Among them, the Fritz-Schlunder model best fitted to the experimental data. The maximum sorption capacity of impregnated resin amounted to 0.45 mg/ g at pH 8.0 and $20^{\circ}C$.

Disinfectant effect of monopersulfate (MPS) compound to white spot syndrome virus (WSSV) of shrimp

  • Gunasekara, CWR;Kim, Seok-Ryel;Rajapaksha, LGTG;Wimalasena, SHMP;Pathirana, HNKS;Shin, Gee-Wook
    • Journal of fish pathology
    • /
    • v.33 no.2
    • /
    • pp.139-143
    • /
    • 2020
  • This study investigated the disinfection effect of monopersulfate (MPS) compound against white spot syndrome virus (WSSV) by bioassay using kuruma shrimp (Marsupenaeus japonicas). A WSSV stock was prepared with muscle homogenate from WSSV-infected whiteleg shrimp (Penaeus vannamei) and its lethal dose 50% endpoint (LD50) and infectious dose 50% endpoint (SID50) were respectively determined as 10-5.63 and 10-6.79 in bioassay using kuruma shrimp, followed by PCR assays. The disinfective effect of MPS compound (1.2 ppm, 2.4 ppm, 4.8 ppm) was performed by bioassay using about 10-fold higher dilution (10-4) of WSSV homogenate. The compound resulted in WSSV inactivation by a concentration-dependent manner. In addition, 4.8 ppm of MPS completely prohibited WSSV infection. To our knowledge, this study is the first report about the usefulness of MPS as a disinfectant to WSSV.

Establishment of an Occupant Analysis modeling for Automobile Side Impact Using ATB Software (ATB 소프트웨어를 이용한 측면충돌시 승랙거동해석 모델링의 확립 및 분석)

  • 임재문;최중원;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.85-96
    • /
    • 1996
  • Most protection systems such as seat belts and airbags are not effective means for side structure. There has been significant effort in the automobile industries in seeking other protective methods, such as stiffer structure and padding on the door inner panel. Therefore, a car-to-car side impact model has been developed using ATB occupant simulation program and validated for test data of the vehicle. Compared to the existing side impact models, the developed model has a more detailed vehicle side structure representation for the more realistic impact response of the door. This model include impact bar which effectively increases the side structure stiffness without reduction of space between the occupant and the door and padding for absorbing impact energy. The established model is applied to a 4-door vehicle. The parameter study indicated that a stiffer impact bar would reduce both the acceleration-based criteria, such as thoracic trauma index: TTI(d), and deformation-based criteria, such as viscous criterion(VC). Padding on the door inner panel would reduce TTI(d) while VC gives the opposite indication in a specified thickness range. For a 4-door vehicle, the stiffness enhancement of B-pillar is more beneficial than that of A-pillar for occupant injury severity indices.

  • PDF

Health monitoring of a historical monument in Jordan based on ambient vibration test

  • Bani-Hani, Khaldoon A.;Zibdeh, Hazem S.;Hamdaoui, Karim
    • Smart Structures and Systems
    • /
    • v.4 no.2
    • /
    • pp.195-208
    • /
    • 2008
  • This paper summarizes the experimental vibration-based structural health monitoring study on a historical monument in Jordan. In this work, and within the framework of the European Commission funded project "wide-Range Non-Intrusive Devices Toward Conservation of Historical Monuments in the Mediterranean Area", a seven and a half century old minaret located in Ajloun (73 km north of the capital Amman) is studied. Because of their cultural value, touristic importance and the desire to preserve them for the future, only non-destructive tests were allowed for the experimental investigation of such heritage structures. Therefore, after dimensional measurements and determination of the current state of damage in the selected monument, ambient vibration tests are conducted to measure the accelerations at strategic locations of the system. Output-only modal identification technique is applied to extract the modal parameters such as natural frequencies and mode shapes. A Non-linear version of SAP 2000 computer program is used to develop a three-dimensional finite element model of the minaret. The developed numerical model is then updated according to the modal parameters obtained experimentally by the ambient-vibration test-results and the measured characteristics of old stone and deteriorated mortar. Moreover, a parametric identification method using the N4Sid state space model is employed to model the dynamic behavior of the minaret and to build up a robust, immune and noise tolerant model.

Reduction of Radiation Dose according to Geometric Parameters from Digital Coronary Angiography (디지털 심혈관조영장치의 기하학적 특성에 따른 선량 감소)

  • Kang, Yeonghan;Cho, PyongKon
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.4
    • /
    • pp.277-284
    • /
    • 2013
  • This study aims to find out geometric parameters which practitioner adjustable to reduce dose in coronary angiography. We take fluoroscopy and cine exposure by use of phantom, and got dose use the dose-area product(DAP) meter of angiography device, than convert DAP to effective dose. As results, Cine exposure shows higher dose measurement about 6-7 times than fluoroscopy. Dose in frame per second(FPS) mode could be decrease down to 70%, as lower FPS. In view of X-ray tube angle, LAO $45^{\circ}$+Caudal $30^{\circ}$ shows highest dose measurement. More use of Collimator, lower dose measurement. Source-image intensifier distance(SID) get longer to 10cm, dose of each fluoroscopy and cine exposure increase up to 25-30%. Image magnification of field of view(FOV) could increase dose up to 1.21-2 times. Also table-image intensifier distance get longer to 10cm, dose increased 1.11-1.25 times. Practitioner can adjust several geometric parameters, as FPS mode, tube angle, Collimation, SID, table-image intensifier distance, FOV. And each factors can reduce radiation dose in coronary angiography.

State-Space Equation Model for Motion Analysis of Floating Structures Using System-Identification Methods (부유식 구조체 운동 해석을 위한 시스템 식별 방법을 이용한 상태공간방정식 모델)

  • Jun-Sik Seong;Wonsuk Park
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.85-93
    • /
    • 2024
  • In this paper, we propose a method for establishing a state-space equation model for the motion analysis of floating structures subjected to wave loads, by applying system-identification techniques. Traditionally, the motion of floating structures has been analyzed in the time domain by integrating the Cummins equation over time, which utilizes a convolution integral term to account for the effects of the retardation function. State-space equation models have been studied as a way to efficiently solve floating-motion equations in the time domain. The proposed approach outlines a procedure to derive the target transfer function for the load-displacement input/output relationship in the frequency domain and subsequently determine the state-space equation that closely approximates it. To obtain the state-space equation, the method employs the N4SID system-identification method and an optimization approach that treats the coefficients of the numerator and denominator polynomials as design variables. To illustrate the effectiveness of the proposed method, we applied it to the analysis of a single-degree-of-freedom model and the motion of a six-degree-of-freedom barge. Our findings demonstrate that the presented state-space equation model aligns well with the existing analysis results in both the frequency and time domains. Notably, the method ensures computational accuracy in the time-domain analysis while significantly reducing the calculation time.

Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model

  • Kettaf, Fatima Zohra;Houari, Mohammed Sid Ahmed;Benguediab, Mohamed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.399-423
    • /
    • 2013
  • In the present study, the thermal buckling behavior of functionally graded sandwich plates is studied using a new hyperbolic displacement model. Unlike any other theory, the theory is variationally consistent and gives four governing equations. Number of unknown functions involved in displacement field is only four, as against five in case of other shear deformation theories. This present model takes into account the parabolic distribution of transverse shear stresses and satisfies the condition of zero shear stresses on the top and bottom surfaces without using shear correction factor. Material properties and thermal expansion coefficient of the sandwich plate faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are assumed as uniform, linear and non-linear temperature rises across the thickness direction. The results reveal that the volume fraction index, loading type and functionally graded layers thickness have significant influence on the thermal buckling of functionally graded sandwich plates.

Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory

  • Chikh, Abdelbaki;Bakora, Ahmed;Heireche, Houari;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.617-639
    • /
    • 2016
  • In this work, an analytical formulation based on both hyperbolic shear deformation theory and stress function, is presented to study the nonlinear post-buckling response of symmetric functionally graded plates supported by elastic foundations and subjected to in-plane compressive, thermal and thermo-mechanical loads. Elastic properties of material are based on sigmoid power law and varying across the thickness of the plate (S-FGM). In the present formulation, Von Karman nonlinearity and initial geometrical imperfection of plate are also taken into account. By utilizing Galerkin procedure, closed-form expressions of buckling loads and post-buckling equilibrium paths for simply supported plates are obtained. The effects of different parameters such as material and geometrical characteristics, temperature, boundary conditions, foundation stiffness and imperfection on the mechanical and thermal buckling and post-buckling loading capacity of the S-FGM plates are investigated.