Robo-Advisor Algorithm with Intelligent View Model (지능형 전망모형을 결합한 로보어드바이저 알고리즘)
-
- Journal of Intelligence and Information Systems
- /
- v.25 no.2
- /
- pp.39-55
- /
- 2019
Recently banks and large financial institutions have introduced lots of Robo-Advisor products. Robo-Advisor is a Robot to produce the optimal asset allocation portfolio for investors by using the financial engineering algorithms without any human intervention. Since the first introduction in Wall Street in 2008, the market size has grown to 60 billion dollars and is expected to expand to 2,000 billion dollars by 2020. Since Robo-Advisor algorithms suggest asset allocation output to investors, mathematical or statistical asset allocation strategies are applied. Mean variance optimization model developed by Markowitz is the typical asset allocation model. The model is a simple but quite intuitive portfolio strategy. For example, assets are allocated in order to minimize the risk on the portfolio while maximizing the expected return on the portfolio using optimization techniques. Despite its theoretical background, both academics and practitioners find that the standard mean variance optimization portfolio is very sensitive to the expected returns calculated by past price data. Corner solutions are often found to be allocated only to a few assets. The Black-Litterman Optimization model overcomes these problems by choosing a neutral Capital Asset Pricing Model equilibrium point. Implied equilibrium returns of each asset are derived from equilibrium market portfolio through reverse optimization. The Black-Litterman model uses a Bayesian approach to combine the subjective views on the price forecast of one or more assets with implied equilibrium returns, resulting a new estimates of risk and expected returns. These new estimates can produce optimal portfolio by the well-known Markowitz mean-variance optimization algorithm. If the investor does not have any views on his asset classes, the Black-Litterman optimization model produce the same portfolio as the market portfolio. What if the subjective views are incorrect? A survey on reports of stocks performance recommended by securities analysts show very poor results. Therefore the incorrect views combined with implied equilibrium returns may produce very poor portfolio output to the Black-Litterman model users. This paper suggests an objective investor views model based on Support Vector Machines(SVM), which have showed good performance results in stock price forecasting. SVM is a discriminative classifier defined by a separating hyper plane. The linear, radial basis and polynomial kernel functions are used to learn the hyper planes. Input variables for the SVM are returns, standard deviations, Stochastics %K and price parity degree for each asset class. SVM output returns expected stock price movements and their probabilities, which are used as input variables in the intelligent views model. The stock price movements are categorized by three phases; down, neutral and up. The expected stock returns make P matrix and their probability results are used in Q matrix. Implied equilibrium returns vector is combined with the intelligent views matrix, resulting the Black-Litterman optimal portfolio. For comparisons, Markowitz mean-variance optimization model and risk parity model are used. The value weighted market portfolio and equal weighted market portfolio are used as benchmark indexes. We collect the 8 KOSPI 200 sector indexes from January 2008 to December 2018 including 132 monthly index values. Training period is from 2008 to 2015 and testing period is from 2016 to 2018. Our suggested intelligent view model combined with implied equilibrium returns produced the optimal Black-Litterman portfolio. The out of sample period portfolio showed better performance compared with the well-known Markowitz mean-variance optimization portfolio, risk parity portfolio and market portfolio. The total return from 3 year-period Black-Litterman portfolio records 6.4%, which is the highest value. The maximum draw down is -20.8%, which is also the lowest value. Sharpe Ratio shows the highest value, 0.17. It measures the return to risk ratio. Overall, our suggested view model shows the possibility of replacing subjective analysts's views with objective view model for practitioners to apply the Robo-Advisor asset allocation algorithms in the real trading fields.
I. Introduction Developing the relationships between companies is very important issue to ensure a competitive advantage in today's business environment (Bleeke & Ernst 1991; Mohr & Spekman 1994; Powell 1990). Partnerships between companies are based on having same goals, pursuing mutual understanding, and having a professional level of interdependence. By having such a partnerships and cooperative efforts between companies, they will achieve efficiency and effectiveness of their business (Mohr and Spekman, 1994). However, it is difficult to expect these ideal results only in the B2B corporate transaction. According to agency theory which is the well-accepted theory in various fields of business strategy, organization, and marketing, the two independent companies have fundamentally different corporate purposes. Also there is a higher chance of developing opportunism and conflict due to natures of human(organization), such as self-interest, bounded rationality, risk aversion, and environment factor as imbalance of information (Eisenhardt 1989). That is, especially partnerships between principal(or buyer) and agent(or supplier) of companies within supply chain, the business contract itself will not provide competitive advantage. But managing partnership between companies is the key to success. Therefore, managing partnership between manufacturer and supplier, and finding causes of conflict are essential to improve B2B performance. In conclusion, based on prior researches and Agency theory, this study will clarify how business hazards cause conflicts on supply chain and then identify how developed conflicts have been managed by two control mechanisms. II. Research model III. Method In order to validate our research model, this study gathered questionnaires from small and medium sized enterprises(SMEs). In Korea, SMEs mean the firms whose employee is under 300 and capital is under 8 billion won(about 7.2 million dollar). We asked the manufacturer's perception about the relationship with the biggest supplier, and our key informants are denied to a person responsible for buying(ex)CEO, executives, managers of purchasing department, and so on). In detail, we contact by telephone to our initial sample(about 1,200 firms) and introduce our research motivation and send our questionnaires by e-mail, mail, and direct survey. Finally we received 361 data and eliminate 32 inappropriate questionnaires. We use 329 manufactures' data on analysis. The purpose of this study is to identify the anticipant role of business hazard (environmental dynamism, asset specificity) and investigate the moderating effect of control mechanism(formal control, social control) on conflict-performance relationship. To find out moderating effect of control methods, we need to compare the regression weight between low versus. high group(about level of exercised control methods). Therefore we choose the structural equation modeling method that is proper to do multi-group analysis. The data analysis is performed by AMOS 17.0 software, and model fits are good statically (CMIN/DF=1.982, p<.000, CFI=.936, IFI=.937, RMSEA=.056). IV. Result V. Discussion Results show that the higher environmental dynamism and asset specificity(on particular supplier) buyer(manufacturer) has, the more B2B conflict exists. And this conflict affect relationship quality and financial outcomes negatively. In addition, social control and formal control could weaken the negative effect of conflict on relationship quality significantly. However, unlikely to assure conflict resolution effect of control mechanisms on relationship quality, financial outcomes are changed by neither social control nor formal control. We could explain this results with the characteristics of our sample, SMEs(Small and Medium sized Enterprises). Financial outcomes of these SMEs(manufacturer or principal) are affected by their customer(usually major company) more easily than their supplier(or agent). And, in recent few years, most of companies have suffered from financial problems because of global economic recession. It means that it is hard to evaluate the contribution of supplier(agent). Therefore we also support the suggestion of Gladstein(1984), Poppo & Zenger(2002) that relational performance variable can capture the focal outcomes of relationship(exchange) better than financial performance variable. This study has some implications that it tests the sources of conflict and investigates the effect of resolution methods of B2B conflict empirically. And, especially, it finds out the significant moderating effect of formal control which past B2B management studies have ignored in Korea.
Price promotion typically reduces the price for a given quantity or increases the quantity available at the same price, thereby enhancing value and creating an economic incentive to purchase. It often is used to encourage product or service trial among nonusers of products or services. Thus, it is important to understand the effects of price promotions on quality perception made by consumer who do not have prior experience with the promoted brand. However, if consumers associate a price promotion itself with inferior brand quality, the promotion may not achieve the sales increase the economic incentives otherwise might have produced. More specifically, low qualitative perception through price promotion will undercut the economic and psychological incentives and reduce the likelihood of purchase. Thus, it is important for marketers to understand how price promotional informations about a brand have impact on consumer's unfavorable quality perception of the brand. Previous literatures on the effects of price promotions on quality perception reveal inconsistent explanations. Some focused on the unfavorable effect of price promotion on consumer's perception. But others showed that price promotions didn't raise unfavorable perception on the brand. Prior researches found these inconsistent results related to the timing of the price promotion's exposure and quality evaluation relative to trial. And, whether the consumer has been experienced with the product promotions in the past or not may moderate the effects. A few studies considered differences among product categories as fundamental factors. The purpose of this research is to investigate the effect of price promotional informations on consumer's unfavorable quality perception under the different conditions. The author controlled the timing of the promotional exposure and varied past promotional patterns and information presenting patterns. Unlike previous researches, the author examined the effects of price promotions setting limit to pretrial situation by controlling potentially moderating effects of prior personal experience with the brand. This manipulations enable to resolve possible controversies in relation to this issue. And this manipulation is meaningful for the work sector. Price promotion is not only used to target existing consumers but also to encourage product or service trial among nonusers of products or services. Thus, it is important for marketers to understand how price promotional informations about a brand have impact on consumer's unfavorable quality perception of the brand. If consumers associate a price promotion itself with inferior quality about unused brand, the promotion may not achieve the sales increase the economic incentives otherwise might have produced. In addition, if the price promotion ends, the consumer that have purchased that certain brand will likely to display sharply decreased repurchasing behavior. Through a literature review, hypothesis 1 was set as follows to investigate the adjustive effect of past price promotion on quality perception made by consumers; The influence that price promotion of unused brand have on quality perception made by consumers will be adjusted by past price promotion activity of the brand. In other words, a price promotion of an unused brand that have not done a price promotion in the past will have a unfavorable effect on quality perception made by consumer. Hypothesis 2-1 was set as follows : When an unused brand undertakes price promotion for the first time, the information presenting pattern of price promotion will have an effect on the consumer's attribution for the cause of the price promotion. Hypothesis 2-2 was set as follows : The more consumer dispositionally attribute the cause of price promotion, the more unfavorable the quality perception made by consumer will be. Through test 1, the subjects were given a brief explanation of the product and the brand before they were provided with a