• Title/Summary/Keyword: 4E-T

Search Result 4,307, Processing Time 0.032 seconds

Some RNases Involved in the Processing of Bacteriophage T4 RNA (박테리오파지 T4 tRNA의 프로세싱에 관여하는 몇가지 RNase들)

  • Thong-Sung Ko
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.396-402
    • /
    • 1982
  • Bacteriophage T4 tRNA processing in E. coli mutant strains defective in RNase Ⅲ, RNase E$^-$, and RNase P, respectively, singly or in combinations, was investigated. In $RNase E^- strains, a RNA band, which would be referred as 9S RNA, accumulates, while in RNase$ P^-$ strains, lower band of 6S double band is accumulated. In RNase III$^-$ strains, the production of tRAN$^{Gln}$ coded by T4 tRNA gene cluster, is severely depressed and also production of species 1 RNA, which is coded by T4 DNA but not by the tRNA gene cluster, is in somewhat depressed amounts; on the other hand, at the same time, an upper band of 6S double bands, coded by T4 tRNA gene cluster, is accumulated in rather greater amounts as compared to the RNase $^+$ strain. The upper band RNA of the 6S double band, however, does not appear to be a precursor to the tRNA$^{Gln}$. The present work points to the lack of evidence for an essential cleavage role of RNase Ⅲ, although there must be a role for the RNase Ⅲ in the T4 tRNA processing.

  • PDF

Distinct Humoral and Cellular Immunity Induced by Alternating Prime-boost Vaccination Using Plasmid DNA and Live Viral Vector Vaccines Expressing the E Protein of Dengue Virus Type 2

  • George, Junu A.;Eo, Seong-Kug
    • IMMUNE NETWORK
    • /
    • v.11 no.5
    • /
    • pp.268-280
    • /
    • 2011
  • Background: Dengue virus, which belongs to the Flavivirus genus of the Flaviviridae family, causes fatal dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) with infection risk of 2.5 billion people worldwide. However, approved vaccines are still not available. Here, we explored the immune responses induced by alternating prime-boost vaccination using DNA vaccine, adenovirus, and vaccinia virus expressing E protein of dengue virus type 2 (DenV2). Methods: Following immunization with DNA vaccine (pDE), adenovirus (rAd-E), and/or vaccinia virus (VV-E) expressing E protein, E protein-specific IgG and its isotypes were determined by conventional ELISA. Intracellular CD154 and cytokine staining was used for enumerating CD4+ T cells specific for E protein. E protein-specific CD8+ T cell responses were evaluated by in vivo CTL killing activity and intracellular IFN-${\gamma}$ staining. Results: Among three constructs, VV-E induced the most potent IgG responses, Th1-type cytokine production by stimulated CD4+ T cells, and the CD8+ T cell response. Furthermore, when the three constructs were used for alternating prime-boost vaccination, the results revealed a different pattern of CD4+ and CD8+ T cell responses. i) Priming with VV-E induced higher E-specific IgG level but it was decreased rapidly. ii) Strong CD8+ T cell responses specific for E protein were induced when VV-E was used for the priming step, and such CD8+ T cell responses were significantly boosted with pDE. iii) Priming with rAd-E induced stronger CD4+ T cell responses which subsequently boosted with pDE to a greater extent than VV-E and rAd-E. Conclusion: These results indicate that priming with live viral vector vaccines could induce different patterns of E protein-specific CD4+ and CD8+ T cell responses which were significantly enhanced by booster vaccination with the DNA vaccine. Therefore, our observation will provide valuable information for the establishment of optimal prime-boost vaccination against DenV.

Temperature Dependence of Excitonic Transitions in GaN Grown by MOCVD

  • Guangde Chen;Jingyu Lin;Hongxing Jiang;Kim, Jung-Hwan;Park, Sung-Eul
    • Journal of Photoscience
    • /
    • v.7 no.1
    • /
    • pp.27-30
    • /
    • 2000
  • The Photoluminescence (PL) measurement results of a very good quality GaN sample grown by metalorganic chemical vapor deposition (MOCVD) are reported. The temperature dependences of peak position, emission intensity, and the full width at half maximum (FWHM) of free-exciton (FX) A and B are presented. Our results show the fast thermal quenching of FX transition intensities and predominantly acoustic phonon scattering of emission line broadening. The transition-energy-shift following the Varshni's empirical equation, and by using it to fit the data, E$\_$A1/(T) = 3.4861 eV -6.046 $\times$ 10$\^$-4/T$^2$ (620.3+ T) eV, E$\_$B1/(T) = 3.4928 eV -4.777 $\times$ 10$\^$-4/T$^2$ / (408.2+ T) eV and E$\_$A2/ = 3.4991 eV -4.426 $\times$ 10$\^$-4/ T$^2$ / (430.6+ T) eV for A(n=1), B(n=1), and A(n=2) are obtained respectively.

  • PDF

Overexpression of Clast4 Reduces Cell Proliferation (Clast4의 과발현에 의한 세포 증식의 감소)

  • Kang, Minkook;Han, Seung Jin
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1144-1150
    • /
    • 2014
  • The eIF4E protein is the key regulator of translation initiation. The interaction of eIF4E with eIF4G triggers the translation of mRNA, and several proteins interrupt this association to modulate translation. Human 4E-T is one of the eIF4E-binding partners that represses the translation of bound mRNAs, and it is involved in the transport of eIF4E to processing bodies (P-bodies). Although Clast4, the mouse homolog of human 4E-T, might play critical roles in the regulation of translation, its properties are not well known. In this report, we deciphered the properties of Clast4 by determining its phosphorylation state, binding to eIF4E, and effects of overexpression on cell proliferation. Clast4 was phosphorylated by protein kinase A (PKA) in vivo on several residues of its amino terminus. Nevertheless, the PKA phosphorylation of Clast4 appeared to have no effect on either its eIF4E-binding ability or localization. Clast4 interacted with eIF4E1 and CPEB. The conserved eIF4E-binding sequence in Clast4, $YXXXXL_{\phi}$, was important for binding eIF4E1A but not eIF4E1B. Similar to that of another well-known eIF4E regulator, the eIF4E binding protein (4E-BP), the overexpression of Clast4 decreased cell proliferation. These results suggest that Clast4 acts as a global translation regulator in cells.

Estimation on Chemical Water Quality Suitability Index for 4 Species of the Mayfly Genus Ephemera (Ephemeroptera: Ephemeridae) Using Probability Distribution Models (확률분포모형을 이용한 하루살이속(Ephemera) 4종에 대한 화학적 수질 적합도지수 평가)

  • Bongjun Jung;Dongsoo Kong
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.6
    • /
    • pp.475-490
    • /
    • 2023
  • Chemical water quality suitability for species (Ephemera strigata, Ephemera separigata, and Ephemera orientalis-sachalinensis group) of the mayfly genus Ephemera (Order Ephemeroptera) was analyzed with probability distribution models (Exponential, Normal, Lognormal, Logistic, Weibull, Gamma, Beta, Gumbel). Data was collected from 23,957 sampling units of 6,664 sites in Korea from 2010 to 2021. E. orientalis-sachalinensis occurred at the range of BOD5 0.3~11.1 mg/L (the best-fit Lognormal model); T-P 0.007~0.769 mg/L (the Gumbel model); TSS 0.4~142.2 mg/L (the Lognormal model). E. strigata occurred at the range of BOD5 0.4~7.4 mg/L (the Gumbel model); T-P 0.007~0.254 mg/L (the Lognormal model); TSS 0.4~17.1 mg/L (the Lognormal model). E. separigata occurred at the range of BOD5 0.4~2.6 mg/L (the R-Weibull model); T-P 0.007~0.134 mg/L (the Lognormal model); TSS 0.7~10.0 mg/L (the Lognormal model). Habitat suitability range of E. orientalis-sachalinensis was estimated to be 0.4~1.9 mg/L (BOD5), 0.024~0.086 mg/L (T-P), 2.5~22.4 mg/L (TSS); that of E. strigata was 0.4~0.7 mg/L (BOD5), 0.007~0.018 mg/L (T-P), 0.0~1.7 mg/L (TSS); that of E. separigata was 0.0~0.4 mg/L (BOD5), 0.000~0.015 mg/L (T-P), 0.5~3.1 mg/L (TSS). In a relative comparision, E. orientalis-sachalinensis was estimated to be eurysaprobic, and narrowly adapted in high levels of T-P and TSS, E. strigata was estimated to be oligosaprobic and adapted in low levels of T-P and TSS, and E. separigata was estimated to be stenooligosaprobic and widely adapted in low level of T-P and TSS.

The Properties of Photoluminescience and Growth of $CdIn_2Te_4$ Single Crystal ($CdIn_2Te_4$ 단결정 성장과 광발광 특성)

  • 이상열;홍광준
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.82-82
    • /
    • 2003
  • p-CdI $n_2$T $e_4$ 단결정을 Bridgeman법으로 3단 수직 전기로에서 성장하였다. 성장된 결정의 결정성은 X선 회절과 광발광 측정으로 조사하였다 막 성장된(as-grown) 결정과 여러 열처리 CdI $n_2$T $e_4$ 결정들의 광발광 스펙트럼 측정으로부터 CdI $n_2$T $e_4$:Cd 광발광에서는 중성 주개 bound 엑시톤 ( $D^{\circ}$,X)가 우세함을 발견하였고 반면에 CdI $n_2$T $e_4$:Cd 광발광에서는 중성 받개 bound 엑시톤 ( $A^{\circ}$,X)가 완전히 사라졌다. 더우기, CdI $n_2$T $e_4$:Te의 광발광 스펙트럼에서 중성 받개 bound 엑시톤 ( $A^{\circ}$,X) 발광은 막 성장된 CdI $n_2$T $e_4$결정에서처럼 우세하였다. 이러한 결과들은 ( $D^{\circ}$,X)가 주개로써 작용하는 $V_{Te}$ ,와 관련이 있고, ( $A^{\circ}$,X)는 받개로 작용하는 $V_{cd}$와 관련이 있음을 가리킨다. p-CdI $n_2$T $e_4$ 결정은 Cd 증기 분위기에서 열처리한 후에는 n형으로 type conversion이 된다는 것을 알았다. 중성 주개-받개 bound 엑시톤 ( $D^{\circ}$, $A^{\circ}$)과 이들의 TO 포논 복제의 발광은 $V_{Te}$ 나 C $d_{int}$와 같은 주개들과 $V_{cd}$ 또는 T $e_{int}$와 같은 받개들 사이의 상호 작용과 관련이 있다. 또한, CdI $n_2$T $e_4$에서 In은 안정된 결합의 형태로 있기 때문에 자연 결함의 형성에는 관련이 없음을 알았다 알았다았다았다

  • PDF

A study on thermally stimulatede current in semi-insulating GaAs (반절연성 GaAs에서 열자극 전류에 관한 연구)

  • 배인호;김기홍;김인수;최현태;이철욱;이정열
    • Electrical & Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.383-388
    • /
    • 1994
  • Deep levels in semi-insulating GaAs were observed by thermally stimulated current(TSC) measurement In the temperature ranges of 100-300K Tl(E$\_$c/-0.18eV), T2(E$\_$c/-0.20eV), T3(E$\_$c/-0.31eV), T4(E$\_$c/-0.40eV), and T5(E$\_$c/-O.43eV) traps have been observed. The TI, T2, and T5 traps seem to be related to the V$\_$As/, V$\_$Ga/-complex, and As$\_$Ga/$\^$++/ respectively. T4 trap is considered with respect to V$\_$Ga/-V$\_$As/ complex.

  • PDF

Changes of IgE production, splenic helper and suppressor T lymphocytes in mice infected with Paragonimus westermani (폐흡충(Paragonimus westermani) 감염이 흰쥐의 IgE 생성 및 비장림프구 아군분포에 미치는 영향)

  • Min, Deuk-Yeong;Ryu, Jae-Suk;Sin, Myeong-Heon
    • Parasites, Hosts and Diseases
    • /
    • v.31 no.3
    • /
    • pp.231-238
    • /
    • 1993
  • Effects of Paragonims westermai infection were observed in mice on the change of serum IgE level, the number of peripheral eosinophils and the distribution of Thy $1.2^{+}{\;}(CD3),{\;}L3T4^{+}{\;}(CD4),{\;}and{\;}Lyt-2^{+}$ (CD8) splenic T Iymphocytes without mitogen serum IgE increased at 3 weeks after the infection and reached a peak on week 4 and maintained high levels of IgE until the 23r6 week. Peripheral eosinophil numbers Increased at the second week and attained peak level on week 9. The frequency of $L3T4^{+}$(CD4) and $Lyt-2^{+}$ (CD8) T Iymphocytes decreased slightly until 4 weeks after the infection, but not significantly. Absolute number of $L3T4^{+}{\;}and{\;}Lyt-2^{+}$ T Iymphocytes, and the ratio of L3T4/Lyt-2 were not markedly changed over the period of observation. The frequency of Thy $1.2^{+}$ (CD3) T lymphocytes in the infected group slightly decreased until 4 weeks after the infection and showed significant reductions at the 2nd and 4th week of the infection (p < 0.05).

  • PDF

Study of the Kinetics and Mechanisms of Alkoxy Radical Reactions in the Gas Phase (I). Arrhenius Parameters for t-Butoxy Radical Reactions with Isobutane and Cyclohexane

  • Song, Se-Ahn;Choo, Kwang-Yul
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.16-21
    • /
    • 1984
  • The relative Arrhenius parameters for t-butoxy radical decomposition (log $A_d$, $E_d$) and hydrogen abstraction of t-butoxy radical from hydrogen donor (log $A_d$, $E_d$) by competitive method were obtained as follows: for cyclohexane; log $A_a/A_d$ = -4.17 mole/l and $E_d-E_a$ = 9.01 kcal/mole, for isobutane; log $A_a/A_d$ = -5.70 mole/l and $E_e-E_a$= 11.0 kcal/mole. From the reported Arrhenius parameters for t-Butoxy radical decomposition reactions the parameters for t-Butoxy radical reactions with isobutane and cyclohexane are estimated to be log $A(l/mol{\cdot}sec)$ = 8.4, $E_a$ = 4.3 kcal/mol and $log A (l/mol{\cdot}sec)= 9.9,\;E_a$ = 6.3 kcal/mol, respectively.