• Title/Summary/Keyword: 4D-CT

Search Result 575, Processing Time 0.031 seconds

Evaluation of the Feasibility of Applying Metabolic Target Volume in 4D RT Using PET/CT Image (4D RT에서 PET/CT Image를 이용한 Metabolic Target Volume 적용의 유용성 평가)

  • Kim, Chang-Uk;Chun, Keum-Sung;Huh, Kyung-Hoon;Kim, Yeon-Shil;Jang, Hong-Seok;Jung, Won-Gyun;Xing, Lei;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.174-182
    • /
    • 2010
  • In this study, we evaluated feasibility of applying MTV (Metabolic Target Volume) to respiratory gated radiotherapy for more accurate treatment using various SUV (Standard Uptake Value) from PET images. We compared VOI (Volume of Interest) images from 50%, 30% and 5% SUV (standard uptake volume) from PET scan of an artificial target with GTV (Gross Tumor Volume) images defined by percentage of respiratory phase from 4D-CT scan for respiratory gated radiotherapy. It is found that the difference of VOI of 30% SUV is reduced noticeably comparing with that of 50% SUV in longitudinal direction with respect to total GTV of 4D-CT image. Difference of VOI of 30% SUV from 4D-PET image defined by respiratory phase from 25% inhalation to 25% exhalation, and GTV from 4D-CT with the same phase is shown below 0.6 cm in maximum. Thus, it is better to use 4D-PET images than conventional PET images for applying MTV to gated RT. From the result that VOI of 5% SUV from 4D-PET agrees well with reference image of 4D-CT in all direction, and the recommendation from department of nuclear medicine that 30% SUV be advised for defining tumor range, it is found that using less than 30%SUV will be more accurate and practical to apply MTV for respiratory gated radiotherapy.

The Study of Dose Variation and Change of Heart Volume Using 4D-CT in Left Breast Radiation Therapy (좌측 유방 방사선치료 시 4D-CT를 이용한 심장의 체적 및 선량변화에 대한 연구)

  • Park, Seon Mi;Cheon, Geum Seong;Heo, Gyeong Hun;Shin, Sung Pil;Kim, Kwang Seok;Kim, Chang Uk;Kim, Hoi Nam
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.187-192
    • /
    • 2013
  • Purpose: We investigate the results of changed heart volume and heart dose in the left breast cancer patients while considering the movements of respiration. Materials and Methods: During the months of March and May in 2012, we designated the 10 patients who had tangential irradiation with left breast cancer in the department of radiation Oncology. With acquired images of free breathing pattern through 3D and 4D CT, we had planed enough treatment filed for covered up the whole left breast. It compares the results of the exposed dose and the volume of heart by DVH (Dose Volume histogram). Although total dose was 50.4 Gy (1.8 Gy/28 fraction), reirradiated 9 Gy (1.8 Gy/5 Fraction) with PTV (Planning Target Volume) if necessary. Results: It compares the results of heart volume and heart dose with the free breathing in 3D CT and 4D CT. It represents the maximum difference volume of heart is 40.5%. In addition, it indicated the difference volume of maximum and minimum, average are 8.8% and 27.9%, 37.4% in total absorbed dose of heart. Conclusion: In case of tangential irradiation (opposite beam) in left breast cancer patients, it is necessary to consider the changed heart volume by the respiration of patient and the heartbeat of patient.

  • PDF

Difference in glenoid retroversion between two-dimensional axial computed tomography and three-dimensional reconstructed images

  • Kim, Hyungsuk;Yoo, Chang Hyun;Park, Soo Bin;Song, Hyun Seok
    • Clinics in Shoulder and Elbow
    • /
    • v.23 no.2
    • /
    • pp.71-79
    • /
    • 2020
  • Background: The glenoid version of the shoulder joint correlates with the stability of the glenohumeral joint and the clinical results of total shoulder arthroplasty. We sought to analyze and compare the glenoid version measured by traditional axial two-dimensional (2D) computed tomography (CT) and three-dimensional (3D) reconstructed images at different levels. Methods: A total of 30 cases, including 15 male and 15 female patients, who underwent 3D shoulder CT imaging was randomly selected and matched by sex consecutively at one hospital. The angular difference between the scapular body axis and 2D CT slice axis was measured. The glenoid version was assessed at three levels (midpoint, upper one-third, and center of the lower circle of the glenoid) using Friedman's method in the axial plane with 2D CT images and at the same level of three different transverse planes using a 3D reconstructed image. Results: The mean difference between the scapular body axis on the 3D reconstructed image and the 2D CT slice axis was 38.4°. At the level of the midpoint of the glenoid, the measurements were 1.7°±4.9° on the 2D CT images and -1.8°±4.1° in the 3D reconstructed image. At the level of the center of the lower circle, the measurements were 2.7°±5.2° on the 2D CT images and -0.5°±4.8° in the 3D reconstructed image. A statistically significant difference was found between the 2D CT and 3D reconstructed images at all three levels. Conclusions: The glenoid version is measured differently between axial 2D CT and 3D reconstructed images at three levels. Use of 3D reconstructed imaging can provide a more accurate glenoid version profile relative to 2D CT. The glenoid version is measured differently at different levels.

Comparison of 64 Channel 3 Dimensional Volume CT with Conventional 3D CT in the Diagnosis and Treatment of Facial Bone Fractures (얼굴뼈 골절의 진단과 치료에 64채널 3D VCT와 Conventional 3D CT의 비교)

  • Jung, Jong Myung;Kim, Jong Whan;Hong, In Pyo;Choi, Chi Hoon
    • Archives of Plastic Surgery
    • /
    • v.34 no.5
    • /
    • pp.605-610
    • /
    • 2007
  • Purpose: Facial trauma is increasing along with increasing popularity in sports, and increasing exposure to crimes or traffic accidents. Compared to the 3D CT of 1990s, the latest CT has made significant improvement thus resulting in higher accuracy of diagnosis. The objective of this study is to compare 64 channel 3 dimensional volume CT(3D VCT) with conventional 3D CT in the diagnosis and treatment of facial bone fractures. Methods: 45 patients with facial trauma were examined by 3D VCT from Jan. 2006 to Feb. 2007. 64 channel 3D VCT which consists of 64 detectors produce axial images of 0.625 mm slice and it scans 175 mm per second. These images are transformed into 3 dimensional image using software Rapidia 2.8. The axial image is reconstructed into 3 dimensional image by volume rendering method. The image is also reconstructed into coronal or sagittal image by multiplanar reformatting method. Results: Contrasting to the previous 3D CT which formulates 3D images by taking axial images of 1-2 mm, 64 channel 3D VCT takes 0.625 mm thin axial images to obtain full images without definite step ladder appearance. 64 channel 3D VCT is effective in diagnosis of thin linear bone fracture, depth and degree of fracture deviation. Conclusion: In its expense and speed, 3D VCT is superior to conventional 3D CT. Owing to its ability to reconstruct full images regardless of the direction using 2 times higher resolution power and 4 times higher speed of the previous 3D CT, 3D VCT allows for accurate evaluation of the exact site and deviation of fine fractures.

Comparisons of Image Quality and Entrance Surface Doses according to Care Dose 4D + Care kV in Chest CT (Chest CT에서 Care Dose 4D+Care kV에 따른 화질과 입사표면선량 비교)

  • Kang, Eun-Bo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.45-51
    • /
    • 2022
  • This study compared DLP values along with phantom entrance surface doses and the image quality of chest CT scans made using a Care Dose 4D+Care kV System, scans that are made using only the Care Dose 4D function, and scans that are made with changes made by applying 80 kVp, 100 kVp, 120 kVp, and 140 kVp to the Care Dose 4D and tube voltage to search for methods to maintain the highest image quality with minimal patient doses. It was shown that DLP values decreased 6.727% when scans were taken with Chest Care Dose 4D + Care kV semi 100 and 6.481% when scans were taken with Chest Care Dose 4D + Care kV. With Chest Non as a standard, skin surface doses decreased 16.519% when scans were taken with Chest Care Dose 4D + Care kV semi 100 and 15.705% when scans were taken with Chest Care Dose 4D + Care kV. With comparisons of image quality, when comparisons were made with Chest Non, comparisons made of SNR values and CNR values in all scanning conditions including Care Dose 4D + Care kV showed that there were no significant differences at P>0.05. Imaging using Chest Care Dose 4D + Care kV in chest CT showed that exposure doses decreased similarly to result values gained from the best conditions through manual adjustments of kV and mAS, and there were no significant differences in image SNR and CNR. If the Chest Care Dose 4D + Care kV function is used, image quality is maintained and patient exposure to radiation can be reduced.

A Comprehensive Analysis of Deformable Image Registration Methods for CT Imaging

  • Kang Houn Lee;Young Nam Kang
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.303-314
    • /
    • 2023
  • This study aimed to assess the practical feasibility of advanced deformable image registration (DIR) algorithms in radiotherapy by employing two distinct datasets. The first dataset included 14 4D lung CT scans and 31 head and neck CT scans. In the 4D lung CT dataset, we employed the DIR algorithm to register organs at risk and tumors based on respiratory phases. The second dataset comprised pre-, mid-, and post-treatment CT images of the head and neck region, along with organ at risk and tumor delineations. These images underwent registration using the DIR algorithm, and Dice similarity coefficients (DSCs) were compared. In the 4D lung CT dataset, registration accuracy was evaluated for the spinal cord, lung, lung nodules, esophagus, and tumors. The average DSCs for the non-learning-based SyN and NiftyReg algorithms were 0.92±0.07 and 0.88±0.09, respectively. Deep learning methods, namely Voxelmorph, Cyclemorph, and Transmorph, achieved average DSCs of 0.90±0.07, 0.91±0.04, and 0.89±0.05, respectively. For the head and neck CT dataset, the average DSCs for SyN and NiftyReg were 0.82±0.04 and 0.79±0.05, respectively, while Voxelmorph, Cyclemorph, and Transmorph showed average DSCs of 0.80±0.08, 0.78±0.11, and 0.78±0.09, respectively. Additionally, the deep learning DIR algorithms demonstrated faster transformation times compared to other models, including commercial and conventional mathematical algorithms (Voxelmorph: 0.36 sec/images, Cyclemorph: 0.3 sec/images, Transmorph: 5.1 sec/images, SyN: 140 sec/images, NiftyReg: 40.2 sec/images). In conclusion, this study highlights the varying clinical applicability of deep learning-based DIR methods in different anatomical regions. While challenges were encountered in head and neck CT registrations, 4D lung CT registrations exhibited favorable results, indicating the potential for clinical implementation. Further research and development in DIR algorithms tailored to specific anatomical regions are warranted to improve the overall clinical utility of these methods.

Evaluation 4D-CT Simulation used of Motion Organ and Tumor for Respiratory Gated Radiation Therapy (호흡동조방사선치료를 위한 4D-CT simulation을 이용한 동적장기와 종양 움직임 평가)

  • Kim, Seung-Chul;Kim, Min-A
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.9
    • /
    • pp.395-402
    • /
    • 2015
  • when the radiation therapy of chest and abdomen, evaluation of the tumor motion and the data was used to minimize damage to normal tissues by separating the tumor and normal tissue and maximize tumor therapeutic effect. Lung and liver cancer each 20 patients based on the 50% top phase using 4D-CT simulation and Light speed-16 of shooting equipment 30 ~ 70 % gating phase interval and 0 ~90 % movement in the full phase interval was measured. If the full phase 0 ~ 90% with gating phase 30~70% of tumors in the liver and lung is shown the biggest difference compared to the motion and the size of the GTV was the largest difference in the I(inferior), full phase 0~90% degree of tumor motion only when a relatively large, gating phase to 30~70% of the tumor when the movement has been found that the reduced average 7.1mm. In the 4D-CT simulation comparing the motion value when the full phase 0~90 % and gating phase 30~70 % when the motion value, twice in the gating phase 30~70 % more than full phase 0~90 % showed a small movement value. The exposure to normal tissues, based on the results obtained from the 4D-CT simulation can be significantly alleviated, After treatment will reduce pain and disability in patients with radiation is expected to be able to effective treatment.

Dose Reduction and Image Quality Assessment of the CareDose 4D Technique on Abdomen Liver Computed Tomography (복부 간 CT 검사에서 CareDose 4D 사용에 따른 선량 감소 및 화질 평가)

  • Seok, Jong-Min;Jeon, Woo-Jin;Park, Young-Joon;Lee, Jin
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.3
    • /
    • pp.109-115
    • /
    • 2017
  • The purpose of this study was to evaluate the clinical efficacy of 128 MDCT (multi-detector computed tomography) for reducing the CareDose 4D dose and comparing the image quality with the fixed tube current technique. For this purpose, we conducted the phantom and clinical studies to evaluate the exposure dose and image of the subject before and after applying the CareDose 4D system in abdominal examination using 128 MDCT. In the phantom study, ROI (Region of interest) was located at the center, 3, 6, 9, 12 o'clock, into two groups: group A without CareDose 4D and Group B applied were measured. In the clinical study, ROI was located at the liver 8 segments, divided into two groups too. The measured items were CT number, noise, and dose length product (DLP) dose. The result of CTDIvol (CT Dose Index volume) measurements in phantom and clinical studies were lower than those before CareDose 4D application, and dose and effective dose were also measured lower (p<.05). There was no difference in CT number before and after application (p>.05). In conclusion, using CareDose 4D, we can obtain optimal image information without deteriorating image quality while reducing patient dose.

IMPROVEMENT OF DOSE CALCULATION ACCURACY ON kV CBCT IMAGES WITH CORRECTED ELECTRON DENSITY TO CT NUMBER CURVE

  • Ahn, Beom Seok;Wu, Hong-Gyun;Yoo, Sook Hyun;Park, Jong Min
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • To improve accuracy of dose calculation on kilovoltage cone beam computed tomography (kV CBCT) images, a custom-made phantom was fabricated to acquire an accurate CT number to electron density curve by full scatter of cone beam x-ray. To evaluate the dosimetric accuracy, 9 volumetric modulated arc therapy (VMAT) plans for head and neck (HN) cancer and 9 VMAT plans for lung cancer were generated with an anthropomorphic phantom. Both CT and CBCT images of the anthropomorphic phantom were acquired and dose-volumetric parameters on the CT images with CT density curve (CTCT), CBCT images with CT density curve ($CBCT_{CT}$) and CBCT images with CBCT density curve ($CBCT_{CBCT}$) were calculated for each VMAT plan. The differences between $CT_{CT}$ vs. $CBCT_{CT}$ were similar to those between $CT_{CT}$ vs. $CBCT_{CBCT}$ for HN VMAT plans. However, the differences between $CT_{CT}$ vs. $CBCT_{CT}$ were larger than those between $CT_{CT}$ vs. $CBCT_{CBCT}$ for lung VMAT plans. Especially, the differences in $D_{98%}$ and $D_{95%}$ of lung target volume were statistically significant (4.7% vs. 0.8% with p = 0.033 for $D_{98%}$ and 4.8% vs. 0.5% with p = 0.030 for $D_{95%}$). In order to calculate dose distributions accurately on the CBCT images, CBCT density curve generated with full scatter condition should be used especially for dose calculations in the region of large inhomogeneity.

3-D CT Imaging of Pathological Bone Changes in a Rat Model of Adjuvant-Induced Arthritis

  • Shim, Kyung-Mi;Kim, Se-Eun;Kang, Seong-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.4
    • /
    • pp.41-46
    • /
    • 2008
  • Computed tomography (CT) is a medical imaging method employing tomography. CT is a 3-Dimensional (3-D) radiographic imaging technique, which is not suited for assessment of inflammation, but can be considered a reference method for assessment of bone damage, due to its direct 3-D visualization of calcified tissue. In this study of pathological joint changes in a rat model of adjuvant-induced arthritis (AIA) and quality analysis of bone destructions were performed by 3-Dimensional computed tomography images. These data demonstrate that the destructive progression of disease in a rat AIA model can be quantified using 3-D CT image analysis, which allows assessment of arthritic disease status and efficacy of experimental therapeutic agents.

  • PDF