• Title/Summary/Keyword: 4D 역산

Search Result 75, Processing Time 0.027 seconds

Microwave Tomography Analysis System for Breast Cancer Detection (전자파 기반 유방암 진단을 위한 토모그램 분석 시스템)

  • Kwon, Ki-Chul;Yoo, Kwan-Hee;Kim, Nam;Son, Seong-Ho;Jeon, Soon-Ik
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.19-26
    • /
    • 2009
  • The microwave exposure device for microwave breast cancer detection consists of RF transceiver and several antennas. The microwave information of object acquired from the microwave exposure device can be calculated permittivity and conductivity by using the inverse scattered analysis. In this paper, we have developed the software for detecting breast cancers based on microwave tomography, by which users not only can check out the existence of breast cancers through the permittivity and conductivity information analysis of the object's internal, but also can analysis easily information for distribution of breast cancers. The developed software provides the function for visualizing the captured permittivity and conductivity information as 2D or 3D color images on which users can easily detect the existence of breast cancers. For more detailed analysis of tomography images, the proposed software also has provided the functions for displaying their cutting profiles as well as position and size information of special area in them.

Classification of Seismic Stations Based on the Simultaneous Inversion Result of the Ground-motion Model Parameters (지진동모델 파라미터 동시역산을 이용한 지진관측소 분류)

  • Yun, Kwan-Hee;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.3
    • /
    • pp.183-190
    • /
    • 2007
  • The site effects of seismic stations were evaluated by conducting a simultaneous inversion of the stochastic point-source ground-motion model (STGM model; Boore, 2003) parameters based on the accumulated dataset of horizontal shear-wave Fourier spectra. A model parameter $K_0$ and frequency-dependent site amplification function A(f) were used to express the site effects. Once after a H/V ratio of the Fourier spectra was used as an initial estimate of A(f) for the inversion, the final A(f) which is considered to be the result of combined effect of the crustal amplification and loca lsite effects was calculated by averaging the log residuals at the site from the inversion and adding the mean log residual to the H/V ratio. The seismic stations were classified into five classes according to $logA_{1-10}^{max}$(f), the maximum level of the site amplification function in the range of 1 Hz < f < 10 Hz, i.e., A: $logA_{1-10}^{max}$(f) < 0.2, B: 0.2 $\leq$ $logA_{1-10}^{max}$(f) < 0.4, C: 0.4 $\leq$ $logA_{1-10}^{max}$(f) < 0.6, D: 0.6 $\leq$ $logA_{1-10}^{max}$(f) < 0.8, E: 0.8 $\leq$ $logA_{1-10}^{max}$(f). Implication of the classified result was supported by observing a shift of the dominant frequency of average A(f) for each classified stations as the class changes. Change of site classes after moving seismic stations to a better site condition was successfully described by the result of the station classification. In addition, the observed PGA (Peak Ground Acceleration)-values for two recent moderate earthquakes were well classified according to the proposed station classes.

Site Characterization using Shear-Wave Velocities Inverted from Rayleigh-Wave Dispersion in Chuncheon, Korea (레일리파 분산을 역산하여 구한 횡파속도를 이용한 춘천시의 부지특성)

  • Jung, JinHoon;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • To reveal and classify site characteristics in densely populated areas in Chuncheon, Korea, Rayleigh-waves were recorded at 50 sites including four sites in the forest area using four 1-Hz velocity sensors and 24 4.5-Hz vertical geophones during the period of January 2011 to May 2013. Dispersion curves of the Rayleigh waves obtained by the extended spatial autocorrelation method were inverted to derive shear-wave velocity ($v_s$) models comprising 40 horizontal layers of 1-m thickness. Depths to weathered rocks ($D_b$), shear wave velocities of these basement rocks ($v_s^b$), average velocities of the overburden layer ($\bar{v}_s^s$), and the average velocity to a depth of 30 m ($v_s30$), were then derived from those models. The estimated values of $D_b$, $v_s^b$, $\bar{v}_s^s$, and $v_s30$ for 46 sites at lower altitudes were in the ranges of 5 to 29 m, 404 to 561 m/s, 208 to 375 ms/s, and 226 to 583 m/s, respectively. According to the Korean building code for seismic design, the estimated $v_s30$ indicates that the lower altitude areas in Chuncheon are classified as $S_C$ (very dense soil and soft rock) or $S_D$ (stiff soil). To determine adequate proxies for $v_s30$, we compared the computed values with land cover, lithology, topographic slope, and surface elevation at each of the measurement sites. Due to a weak correlation (r = 0.41) between $v_s30$ and elevation, the best proxy of them, applications of this proxy to Chuncheon of a relatively small area seem to be limited.

MT surveys near Century Zinc Mine, NW Queensland, Australia (호주 Century 아연 광산에서의 MT 탐사)

  • Lee, Tae-Jong;Lee, Seong-Kon;Song, Yoon-Ho;Cull, James
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.345-352
    • /
    • 2007
  • Two-dimensional (2D) MT surveys near the Century mine in Australia have been performed with very far remote reference in Esashi, Japan (RR_ESS) as well as Gregory Downs (RR_GREG), which are roughly 6,400 km and 80 km apart from the survey area, respectively. Good quality of MT data could be obtained by remote reference processing with RR_GREG, while the coherency of magnetic fields between field sites and RR_ESS was not sufficient to be used as remote data. Both 2D and 3D inversion of 2D profile data represented the general geological structure beneath the survey area. The main target of the survey, Termite Range Fault, appeared as a boundary between a conductive block to the north and a resistive block to the south in the reconstructed resistivity section, and is inclined slightly to the north-east direction.

Analysis of Crustal Velocity Structure Beneath Gangwon Province, South Korea, Using Joint Inversion of Receiver Functions and Surface Wave Dispersion (수신함수와 표면파 분산의 연합 역산을 사용한 강원도 지역 하부의 지각속도구조 분석)

  • Jeong-Yeon Hwang;Sung-Joon Chang
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.277-291
    • /
    • 2023
  • To analyze the crustal velocity structures beneath 21 broadband seismic stations in Gangwon Province, South Korea, we first applied the H-κ stacking method to 139 teleseismic event data (Mw ≥ 5.8 and the epicentral distance of 30° - 90°) occurring between March 18, 2019 and December 31, 2022 to estimate the Moho depths and Vp/Vs ratios beneath each station. The Moho depths and Vp/Vs ratios from the H-κ stacking method range from 24.9 to 33.2 km depth and 1.695 - 1.760, respectively, and the estimated Vp/Vs ratios were applied to the joint inversion of receiver functions and surface wave dispersion to obtain 1-D crustal velocity models beneath each station. The resulting Moho depths range from 25.9 to 33.7 km depth, similar to the results from the H-κ stacking method. Moho depth results from the both methods are generally consistent with Airy's isostasy. The 1-D crustal velocity models confirm that the existence of 2 km thick low-velocity layers with P-wave velocities of 5 km/s or less at some stations in the Taebaeksan basin, and at the stations CHNB and GAPB in northern Gangwon Province, which are located above the Cenozoic sedimentary layer. The station SH2B, although not overlying a sedimentary layer, has a low P-wave velocity near the surface, which is probably due to various factors such as weathering of the bedrock. We also observe a velocity inversion with decreasing velocity with depth at all stations within 4 - 12 km depths, and mid-crustal discontinuities possibly due to density differences in the rocks at around 10 km depth below some stations.

Quantification of Heterogenous Background Fractures in Bedrocks of Gyeongju LILW Disposal Site (경주 방폐장의 불균질 배경 단열의 정량화)

  • Cho, Hyunjin;Cheong, Jae-Yeol;Lim, Doo-hyun;Hamm, Se-Yeong
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.463-474
    • /
    • 2017
  • Heterogeneous background fractures of granite and sedimentary rocks in Gyeongju LILW (low-intermediate level radioactive waste) facility area have been characterized quantitatively by analyzing fracture parameters (orientation, intensity, and size). Surface geological survey, electrical resistivity survey, and acoustic televiewer log data were used to characterize the heterogeneity of background fractures. Bootstrap method was applied to represent spatial anisotropy of variably oriented background fractures in the study area. As a result, the fracture intensity was correlated to the inverse distance from the faults weighted by nearest fault size and the mean value of electrical resistivity and the average volumetric fracture intensity ($P_{32}$) was estimated as $3.1m^2/m^3$. Size (or equivalent radius) of the background fractures ranged from 1.5 m to 86 m and followed to power-law distribution based on the fractal property of fracture size, using fractures measured on underground silos and identified surface faults.

A Novel Carrier Leakage Suppression Scheme for UHF RFID Reader (UHF 대역 RFID 리더 반송파 누설 억압 연구)

  • Jung, Jae-Young;Park, Chan-Won;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.4
    • /
    • pp.489-499
    • /
    • 2011
  • RFID technologies, which allow collecting, storing, processing, and tracking information by wirelessly recognizing the inherent ID of object through an attached electronic tag, have a variety of application areas. This paper presents a novel carrier leakage suppression RF(CLS-RF) front-end for ultra-high-frequency RF identification reader. The proposed reader CLS-RF front-end structure generates the carrier leakage replica through the nonlinear path that contains limiter. The limiting function only preserves the frequency and phase information of the leakage signal and rejects the amplitude modulated tag signal in the envelope. The carrier leakage replica is then injected into the linear path that contains phase shifter. Therefore, the carrier leakage signal is effectively cancelled out, while not affecting the gain of the desired tag backscattering signal. We experimentally confirm that the prototype shows a significant improvement in the leakage to signal ratio by up to 36 dB in 910 MHz, which is consistent with our simulation results.

A Study on the Characteristics of W-Mo Ore Deposit in Bayan-Onjuul, Mongolia Using Magnetic Data (자력자료를 이용한 몽골 바얀온줄 텅스텐-몰리브덴 광화대 특성 연구)

  • Park, Gyesoon;Lee, Bum Han;Kim, In-Joon;Heo, Chul-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.4
    • /
    • pp.202-208
    • /
    • 2014
  • KIGAM (Korea Institute of Geoscience and Mineral Resources) and MRAM (Mineral Resources Authority of Mongolia) performed joint survey on Bayan-Onjuul W-Mo mineralized area. Following the survey, we carried out magnetic survey. W-Mo occurrences are located with keeping a certain distance from the northern boundary of granite which has higher magnetic susceptibility values. Also, the 3D imaging results of magnetic inversion show that granite bodies are extended to the W-Mo occurrence areas from the deep main body with decreasing of susceptibility. The results of magnetic data analysis are well matched with the general characteristics of ore solution involved with W mineralization. The further study about the hidden ore deposits which have similar spatial relationship between granite and known WMo occurrences are necessary to improve the economic feasibility.

Distortion of Resistivity Data Due to the 3D Geometry of Embankment Dams (저수지 3차원 구조에 의한 전기비저항 탐사자료의 왜곡)

  • Cho, In-Ky;Kang, Hyung-Jae;Kim, Ki-Ju
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.291-298
    • /
    • 2006
  • Resistivity method is a practical and effective geophysical technique to detect leakage zones in embankment dams. Generally, resistivity survey conducted along the crest assumes that the embankment dam has a 2D structure. However, the 3D topography of embankments distorts significantly resistivity data measured on anywhere of the dam. In this study, we analyse the influence from 3D effects created by specific dam geometry through the 3D finite element modeling technique. We compared 3D effects when resistivity surveys are carried out on the upstream slope, left edge of the crest, center of the crest, right edge of the crest and downstream slope. We ensure that 3D effect is greatly different according to the location of the survey line and data obtained on the downstream slope are most greatly influenced by 3D dam geometry. Also, resistivity data are more influenced by the electrical resistivity of materials constituting reservoir than 3D effects due to specific dam geometry. Furthermore, using resistivity data synthesized with 3D modeling program for an embankment dam model with leakage zone, we analyse the possibility of leakages detection from 2D resistivity surveys performed along the embankment dam.

A Tracer Study on Mankyeong River Using Effluents from a Sewage Treatment Plant (하수처리장 방류수를 이용한 추적자 시험: 만경강 유역에 대한 사례 연구)

  • Kim Jin-Sam;Kim Kang-Joo;Hahn Chan;Hwang Gab-Soo;Park Sung-Min;Lee Sang-Ho;Oh Chang-Whan;Park Eun-Gyu
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.2
    • /
    • pp.82-91
    • /
    • 2006
  • We investigated the possibility of using effluents from a municipal sewage treatment plant (STP) as tracers a tracer for hydrologic studies of rivers. The possibility was checked in a 12-km long reach downstream of Jeonju Municipal Sewage Treatment Plant (JSTP). Time-series monitoring of the water chemistry reveals that chemical compositions of the effluent from the JSTP are fluctuating within a relatively wide range during the sampling period. In addition, the signals from the plant were observed at the downstream stations consecutively with increasing time lags, especially in concentrations of the conservative chemical parameters (concentrations f3r chloride and sulfate, total concentration of major cations, and electric conductivity). Based on this observation, we could estimate the stream flow (Q), velocity (v), and dispersion coefficient (D). A 1-D nonreactive solute-transport model with automated optimization schemes was used for this study. The values of Q, v, and D estimated from this study varied from 6.4 to $9.0m^3/sec$ (at the downstream end of the reach), from 0.06 to 0.10 m/sec, and from 0.7 to $6.4m^2/sec$, respectively. The results show that the effluent from a large-scaled municipal STP frequently provides good, multiple natural tracers far hydrologic studies.