• Title/Summary/Keyword: 4-parametric factor model

Search Result 34, Processing Time 0.021 seconds

Comparison of accuracy between LC model and 4-PFM when COVID-19 impacts mortality structure

  • Choi, Janghoon
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.3
    • /
    • pp.233-250
    • /
    • 2021
  • This paper studies if the accuracies of mortality models (LC model vs. 4-parametric model) are aggravated if a mortality structure changes due to the impact of COVID-19. LC model (LCM) uses dimension reduction for fitting to the log mortality matrix so that the performance of the dimension reduction method may not be good when the matrix structure changes. On the other hand, 4-parametric factor model (4-PFM) is designed to use factors for fitting to log mortality data by age groups so that it would be less affected by the change of the mortality structure. In fact, the forecast accuracies of LCM are better than those of 4-PFM when life-tables are used whereas those of 4-PFM are better when the mortality structure changes. Thus this result shows that 4-PFM is more reliable in performance to the structural changes of the mortality. To support the accuracy changes of LCM the functional aspect is explained by computing eigenvalues produced by singular vector decomposition

6-Parametric factor model with long short-term memory

  • Choi, Janghoon
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.5
    • /
    • pp.521-536
    • /
    • 2021
  • As life expectancies increase continuously over the world, the accuracy of forecasting mortality is more and more important to maintain social systems in the aging era. Currently, the most popular model used is the Lee-Carter model but various studies have been conducted to improve this model with one of them being 6-parametric factor model (6-PFM) which is introduced in this paper. To this new model, long short-term memory (LSTM) and regularized LSTM are applied in addition to vector autoregression (VAR), which is a traditional time-series method. Forecasting accuracies of several models, including the LC model, 4-PFM, 5-PFM, and 3 6-PFM's, are compared by using the U.S. and Korea life-tables. The results show that 6-PFM forecasts better than the other models (LC model, 4-PFM, and 5-PFM). Among the three 6-PFMs studied, regularized LSTM performs better than the other two methods for most of the tests.

Bootstrap Simulation for Performance Evaluation of Optical Multifiber Connectors (붓스크랩 기법을 이용한 다심 광커넥터 손실특성 예측)

  • 전오곤;강기훈
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.4
    • /
    • pp.250-264
    • /
    • 1998
  • The purpose of the thesis is to develop simulation program for forecasting of optical connector. So we can achieve the time and the money saving for making the optical connector. Optical performance (insertion loss) of optical connector mainly relies on 3 misalignment factors-ferrule factor due to mis-manufacture from design, auto-centering effect that is fiber behavior phenomena between hole and fiber, fiber misalignment factor. Simulation use experimental data with auto-centering effect and fiber factor and use pseudo data with ferrule through random number generation because it is developing stage. In this study we a, pp.y kernel density estimation method with experimental data in order to know whether it belong to or not specific parametric distribution family. And we simulate to forecast insertion loss of optical multifiber connector under specific design model using nonparametric bootstrap resampling data and parametric pseudo samples from uniform distribution. We obtain the tolerance specifications of misalignment factors satisfying not exceed in maximum 1.0dB and choose optimal hole diameter.

  • PDF

Computer simulation for dynamic wheel loads of heavy vehicles

  • Kawatani, Mitsuo;Kim, Chul-Woo
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.409-428
    • /
    • 2001
  • The characteristics of dynamic wheel loads of heavy vehicles running on bridge and rigid surface are investigated by using three-dimensional analytical model. The simulated dynamic wheel loads of vehicles are compared with the experimental results carried out by Road-Vehicles Research Institute of Netherlands Organization for Applied Scientific Research (TNO) to verify the validity of the analytical model. Also another comparison of the analytical result with the experimental one for Umeda Entrance Bridge of Hanshin Expressway in Osaka, Japan, is presented in this study. The agreement between the analytical and experimental results is satisfactory and encouraging the use of the analytical model in practice. Parametric study shows that the dynamic increment factor (DIF) of the bridge and RMS values of dynamic wheel loads are fluctuated according to vehicle speeds and vehicle types as well as roadway roughness conditions. Moreover, there exist strong dominant frequency resemblance between bounce motion of vehicle and bridge response as well as those relations between RMS values of dynamic wheel loads and dynamic increment factor (DIF) of bridges.

A Study on the Improvement of Wave and Storm Surge Predictions Using a Forecasting Model and Parametric Model: a Case Study on Typhoon Chaba (예측 모델 및 파라미터 모델을 이용한 파랑 및 폭풍해일 예측 개선방안 연구: 태풍 차바 사례)

  • Jin-Hee Yuk;Minsu Joh
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.4
    • /
    • pp.67-74
    • /
    • 2023
  • High waves and storm surges due to tropical cyclones cause great damage in coastal areas; therefore, accurately predicting storm surges and high waves before a typhoon strike is crucial. Meteorological forcing is an important factor for predicting these catastrophic events. This study presents an improved methodology for determining accurate meteorological forcing. Typhoon Chaba, which caused serious damage to the south coast of South Korea in 2016, was selected as a case study. In this study, symmetric and asymmetric parametric vortex models based on the typhoon track forecasted by the Model for Prediction Across Scales (MPAS) were used to create meteorological forcing and were compared with those models based on the best track. The meteorological fields were also created by blending the meteorological field from the symmetric / asymmetric parametric vortex models based on the MPAS-forecasted typhoon track and the meteorological field generated by the forecasting model (MPAS). This meteorological forcing data was then used given to two-way coupled tide-surge-wave models: Advanced CIRCulation (ADCIRC) and Simulating Waves Nearshore (SWAN). The modeled storm surges and waves correlated well with the observations and were comparable to those predicted using the best track. Based on our analysis, we propose using the parametric model with the MPAS-forecasted track, the meteorological field from the same forecasting model, and blending them to improve storm surge and wave prediction.

Suspension Parameter Design Using a Desingn of Experiments (실험계획법을 이용한 현가장치의 요소설계)

  • 김상중;박찬종;박태원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.16-27
    • /
    • 1996
  • Using computer in design is a trend in recent years. A good suspension model is depend on the carefully prepared data like joint connection points or spring stiffness, etc. Once a good computer model is obtained, a parametric study for spciffic suspension design factor, like a toe angle, can be done to obtain sensitivity information. Using this information, several important design parameters for a specific design factor can be identified. Once a design of experiments is done using computer models, the results can be used to approximate a function which can best represent the experimentation. An optimum solution of this function can be used to find an optimum design of a suspension system for a specific suspension design factor. Same method is again applied to other design factors iteratively until a good suspension system design is obtained.

  • PDF

Behavior and calculation on concrete-filled steel CHS (Circular Hollow Section) beam-columns

  • Han, Lin-Hai;Yao, Guo-Huang;Zhao, Xiao-Ling
    • Steel and Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.169-188
    • /
    • 2004
  • A mechanics model is developed in this paper for concrete-filled steel CHS (circular hollow section) beam-columns. A unified theory is described where a confinement factor (${\xi}$) is introduced to describe the composite action between the steel tube and the filled concrete. The predicted load versus deformation relationship is in good agreement with test results. The theoretical model was used to investigate the influence of important parameters that determine the ultimate strength of concrete-filled steel CHS beam-columns. The parametric and experimental studies provide information for the development of formulas for the calculation of the ultimate strength of the composite beam-columns. Comparisons are made with predicted beam-columns strengths using the existing codes, such as LRFD-AISC-1999, AIJ-1997, BS5400-1979 and EC4-1994.

Parametric Studies of Slope stability Analysis by 3D FEM Using Strength Reduction Method (강도감소법에 의한 3차원 사면안정해석에 대한 매개변수 연구)

  • Kim, Young-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.25-32
    • /
    • 2016
  • The two-dimensional (2D) analysis is widely used in geotechnical engineering for slope stability analysis assuming a plane-strain condition. It is implicitly assumed that the slip surface is infinitely wide, and thus three-dimensional (3D) end effects are negligible because of the infinite width of the slide mass. The majority of work on this subject suggests that the 2D factor of safety is conservative (i.e. lower than the 'true' 3D factor of safety). Recently, the 3D finite element method (FEM) became more attractive due to the progress of computational tools including the computer hardware and software. This paper presents the numerical analyses on rotational mode and translational mode slopes using the 2D and 3D FEM as well as 2D limit equilibrium methods (LEM). The results of the parametric study on the slope stability due to mesh size, dilatency angle, boundary conditions, stress history and model dimensions change are analysed. The analysis showed that the factor of safety in 3D analysis is always higher than that in the 2D analysis and the discrepancy of the slope width in W direction on the factor of safety is ignored if the roller type of W direction conditions is applied.

Attenuation of S wave of the Southeastern Part of the Korean Peninsula (한반도 동남부의 S파 감쇠)

  • 박동희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.51-57
    • /
    • 2001
  • In order to estimate attenuation characteristics, nonparametric model is used. Evaluation of this model requires suites of average spectral amplitude data as a function of distance without adopting any assumed parametric forms. Values of Quality factor, Q were estimated for individual frequencies by matrix inversion of S wave amplitude spectra for 21 records of 8 small and intermediate earthquakes (2.7$(1/r)^{1/2}$. The best models for 1/Q values were found to be 0.000453+0.001851/f and 0.000451+0.009261/f, respectively. This results can be compared to the conventional functional form of Q=$af^{b}$ and be used to estimate source spectra and site response.

  • PDF

Friction Characteristics of Piston Ring Pack with Consideration of Mixed Lubrication: Parametric Investigation

  • Kim, Ji-Young;Kim, Jee-Woon;Cho, Myung-Rae;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.468-475
    • /
    • 2002
  • This paper reports on the friction characteristics of a piston ring pack with consideration of mixed lubrication. The analytical model is presented by using the average flow antral asperity contact model. The effect of operating condition, and design parameters on the MOFT, maximum friction force, and mean frictional power loss are investigated. Piston ring prick shows mixed and hydrodynamic lubrication characteristics. From the predicted results, it was fand that the ring tension and height of surface roughness have great influence on the frictional power losses in a ring pack. Especially, ring tension is a dominant factor for the reduction of friction loss and maintenance of oil film thickness.