• Title/Summary/Keyword: 4-node shell finite element

Search Result 48, Processing Time 0.028 seconds

The use of the strain approach to develop a new consistent triangular thin flat shell finite element with drilling rotation

  • Guenfoud, Hamza;Himeur, Mohamed;Ziou, Hassina;Guenfoud, Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.385-398
    • /
    • 2018
  • In the present paper, we offer a new flat shell finite element. It is the result of the combination of a membrane element and a bending element, both based on the strain-based formulation. It is known that $C^{\circ}$ plane membrane elements provide poor deflection and stress for problems where bending is dominant. In addition, they encounter continuity and compliance problems when they connect to C1 class plate elements. The reach of the present work is to surmount these problems when a membrane element is coupled with a thin plate element in order to construct a shell element. The membrane element used is a triangular element with four nodes, three nodes at the vertices of the triangle and the fourth one at its barycenter. Each node has three degrees of freedom, two translations and one rotation around the normal. The coefficients related to the degrees of freedom at the internal node are subsequently removed from the element stiffness matrix by using the static condensation technique. The interpolation functions of strain, displacements and stresses fields are developed from equilibrium conditions. The plate element used for the construction of the present shell element is a triangular four-node thin plate element based on Kirchhoff plate theory, the strain approach, the four fictitious node, the static condensation and the analytic integration. The shell element result of this combination is robust, competitive and efficient.

Defect-free 4-node flat shell element: NMS-4F element

  • Choi, Chang-Koon;Lee, Phill-Seung;Park, Yong-Myung
    • Structural Engineering and Mechanics
    • /
    • v.8 no.2
    • /
    • pp.207-231
    • /
    • 1999
  • A versatile 4-node shell element which is useful for the analysis of arbitrary shell structures is presented. The element is developed by flat shell approach, i.e., by combining a membrane element with a Mindlin plate element. The proposed element has six degrees of freedom per node and permits an easy connection to other types of finite elements. In the plate bending part, an improved Mindlin plate has been established by the combined use of the addition of non-conforming displacement modes (N) and the substitute shear strain fields (S). In the membrane part, the nonconforming displacement modes are also added to the displacement fields to improve the behavior of membrane element with drilling degrees of freedom and the modified numerical integration (M) is used to overcome the membrane locking problem. Thus the element is designated as NMS-4F. The rigid link correction technique is adopted to consider the effect of out-of-plane warping. The shell element proposed herein passes the patch tests, does not show any spurious mechanism and does not produce shear and membrane locking phenomena. It is shown that the element produces reliable solutions even for the distorted meshes through the analysis of benchmark problems.

MLS-Based Finite Elements and a Proposal for Their Applications (MLS기반 유한요소와 그 응용에 관한 제언)

  • Cho, Young-Sam
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.335-341
    • /
    • 2009
  • In this paper, review of developed MLS-based finite elements and a proposal for their applications are described. The shape functions and their derivatives of MLS-based finite elements are constructed using Moving-Least Square approximation. In MLS-based finite element, using the adequate influence domain of weight function used in MLS approximation, kronecker delta condition could be satisfied at the element boundary. Moreover, because of the characteristics of MLS approximation, we could easily add extra nodes at an arbitrary position in MLS-based finite elements. For these reasons, until now, several variable-node elements(2D variable element for linear case and quadratic case and 3D variable-node elements) and finite crack elements are developed using MLS-based finite elements concept. MLS-based finite elements could be extended to 2D variable-node triangle element, 2D finite crack triangle element, variable-node shell element, finite crack shell element, and 3D polyhedron element. In this paper, we showed the feasibility of 3D polyhedron element at the case of femur meshing.

Analysis of Open Conical Shells with Stiffeners (보강재로 보강된 개방 원뿔형 쉘의 해석)

  • Park Weon-Tae;Choi Jae-Jin;Son Byung-Jik
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.101-108
    • /
    • 2004
  • In this study, open conical shells with ring and stringers are analyzed A versatile 4-node shell element which is useful for the analysis of conical shell structures is used and 3-D beam element is used for stiffeners. An improved flat shell element is established by the combined use of the addition of non-conforming displacement modes and the substitute shear strain fields. The proposed element has six degrees of freedom per node and permits an easy connection to other types(beam element) of finite elements. Optimum location and optimum section properties of ring and stinger are obtained. It is shown thai the thickness of conical shell can be reduced about $20\~50\%$ by appropriate location of stiffeners.

Geometrically Non-linear Analysis of Shell Structures (쉘구조물의 기하학적 비선형해석)

  • Jang, Myung-Ho;Kim, Jae-Yeol;Sur, Sam-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.4 s.10
    • /
    • pp.85-92
    • /
    • 2003
  • In this work, a finite element model is presented for geometrically non-linear analysis of shell structures. Finite element by using a three-node flat triangular shell element is formulated. The non-linear incremental equilibrium equations are formulated by using an updated Lagrangian formulation and the solutions are obtained with the incremental/iterative Newton-Raphson method and arc length method. Some of results are presented for shell structures. The obtained results are in good agreement with the results available in existing literature.

  • PDF

Development of a flat shell element by using the hybrid Trefftz plane element with drilling D.O.F. and the DKMQ element (면내 회전 자유도가 추가된 hybrid Trefftz 평면 요소와 DKMQ 요소를 이용한 4 절점 평면 셸 요소의 개발)

  • 최누리;추연석;이승규;이병채
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.855-859
    • /
    • 2004
  • We develop a new four-node flat shell element which is accurate, efficient, and suitable to be used on general purpose. The new element has a hybrid Trefftz element with drilling degrees of freedom as a membrane part. We define the two independent displacement field: the internal displacement field that satisfies governing equations in the domain a priori and the boundary displacement field that is usually used as a conventional finite element method. The hybrid Trefftz variational formulation connects these two displacement fields on the boundary of the domain. To add drilling degrees of freedom, we introduce the Allman's quadratic displacement field to the boundary displacement field. As a result, our flat shell element has 6 degrees of freedom per a node. We also use the well-known DKMQ plate bending element for the plate part of the proposed element. The DKMQ element satisfies Mindlin-Reissner‘s plate theory along the edge of the element and gives proper behavior regardless of the thickness. A series of numerical experiments shows that the performance of the new element such as accuracy, rate of convergence, robustness to mesh quality, and so on.

  • PDF

Linear shell elements for active piezoelectric laminates

  • Rama, Gil;Marinkovic, Dragan Z.;Zehn, Manfred W.
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.729-737
    • /
    • 2017
  • Piezoelectric composite laminates are a powerful material system that offers vast options to improve structural behavior. Successful design of piezoelectric adaptive structures and testing of control laws call for highly accurate, reliable and numerically efficient numerical tools. This paper puts focus onto linear and geometrically nonlinear static and dynamic analysis of smart structures made of such a material system. For this purpose, highly efficient linear 3-node and 4-node finite shell elements are proposed. Both elements employ the Mindlin-Reissner kinematics. The shear locking effect is treated by the discrete shear gap (DSG) technique with the 3-node element and by the assumed natural strain (ANS) approach with the 4-node element. Geometrically nonlinear effects are considered using the co-rotational approach. Static and dynamic examples involving actuator and sensor function of piezoelectric layers are considered.

Undamped Forced Vibration Response of Curved Composite Panels using Enhanced Assumed Strain Finite Element-Direct Integration Method (추가변형률 유한요소-직접적분법을 이용한 복합적층 곡선패널의 비감쇠 강제진동응답)

  • Park, Won-Tae;Chun, Kyoung-Sik;Son, Byung-Jik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.247-258
    • /
    • 2004
  • The composite shell element is developed for the solution of undamped forced vibration problem of composite curved panels. The finite element used in the current study is an 4-node enhanced assumed shell element with six degrees of freedom per node. The composite shell element is free of both shear and membrane locking phenomenon by using the enhanced assumed strain(EAS) method. A modification to the first-order shear deformation shell theory is proposed, which results in parabolic thorough-thickness distribution of the transverse shear strains and stresses. It eliminates the need for shear correction factors in the first order theory. Newmark's direct integration technique is used for carrying out the integration of the equation motion, to obtain the repones history. Parametric studies of curved composite panels are carried out for forced vibration analysis by geometrical shapes and by laminated composite; such as fiber orientation, stacking sequence.

Finite Element Analysis of Air Springs with Fiber-Reinforced Rubber Composites Using 3-D Shell Elements (3차원 셸 요소를 이용한 섬유보강 고무모재 공기 스프링의 유한요소해석)

  • Lee, Hyoung-Wook;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.602-609
    • /
    • 2001
  • This paper is concerned with the orthotropic problem of diaphragm-type air springs which consist of rubber linings, nylon reinforced rubber composite and bead ring. The analysis is carried out with a finite element method developed to consider the orthotropic properties, geometric nonlinearity using four-node degenerated shell element with reduced integration. Physical stabilization scheme is used to control the zeroenergy mode of the element. The analysis includes an inflation analysis and a lateral analysis of an air spring for the deformed shape and the spring load with respect to the vertical and l ateral deflection. Numerical results demonstrate the variation of the outer diameter, the fold height, the vertical force and the lateral force with respect to the inflation pressure and the lateral deflection.

Development of High-Performance FEM Modeling System Based on Fuzzy Knowledge Processing

  • Lee, Joon-Seong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.193-198
    • /
    • 2004
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of tree-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Voronoi diagram method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.