• Title/Summary/Keyword: 4-hydroxy TEMPO (TEMPOL)

Search Result 2, Processing Time 0.015 seconds

Improvement of Bleaching Performance of Photosensitive Electrochromic Device by the Additive of TEMPOL (TEMPOL 첨가제 적용에 의한 광감응형 전기변색 소자 탈색성능 향상)

  • Song, Seung Han;Park, Hee sung;Cho, Churl Hee;Hong, Sungjun;Han, Chi-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.3
    • /
    • pp.209-217
    • /
    • 2022
  • We have developed photosensitive electrochromic smart windows that does not require any transparent conducting oxide (TCO) substrate. In our previous study, we demonstrated that a flexible film-type device made with a low temperature curing WO3 sol and TiO2 sol could show a reversible and rapid switching between colored and bleached state via incorporation of platinum catalysts on the surface of WO3 layer. However, when these devices were exposed to sunlight over 4 hour, it was confirmed that they did not return to fully bleached state in the darkened state due to their overcoloring process. In this study, we added 4-hydroxy-(2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPOL) as an additive to the electrolyte of photosensitive electrochromic device to effectively prevent the undesired overcoloring process. The resulting device with TEMPOL indeed did not undergo excessive coloration and showed great reversibility even after being exposed to sunlight for over 4 hours. Various concentrations of TEMPOL were applied to compare changes in the visible transmittance and coloring/bleaching kinetics of devices. In terms of energetic point of view, we proposed a plausible mechanism of TEMPOL to prevent excessive coloration.

The Effect of Different Membranes on the Performance of Aqueous Organic Redox Flow Battery using Methyl Viologen and TEMPOL Redox Couple (다양한 멤브레인을 적용한 메틸 바이올로겐과 템폴 활물질 기반 수계 유기 레독스 흐름 전지 성능 평가)

  • Park, GyunHo;Lee, Wonmi;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.868-873
    • /
    • 2019
  • In this study, the evaluation of performance of AORFB using methyl viologen and TEMPOL as organic active materials in neutral supporting electrolyte (NaCl) with various membrane types was performed. Using methyl viologen and TEMPOL as active materials in neutral electrolyte solution, the cell voltage is 1.37V which is relatively high value for AORFB. Two types of membranes were examined for performance comparison. First, when using Nafion 117 membrane which is commercial cation exchange membrane, only the charge process occurred in the first cycle and the single cell couldn't work because of its high resistance. However, when using Fumasep anion exchange membrane (FAA-3-50) instead of Nafion 117 membrane, the result was obtained as the totally different charge-discharge graphs. When current density was $40mA{\cdot}cm^{-2}$ and cut off voltage range was from 0.55 V to 1.7 V, the charge efficiency (CE) was 97% and voltage efficiency (VE) was 78%. In addition, the discharge capacity was $1.44Ah{\cdot}L^{-1}$ which was 54% of theoretical capacity ($2.68Ah{\cdot}L^{-1}$) at $10^{th}$ cycle and the capacity loss rate was $0.0015Ah{\cdot}L^{-1}$ per cycle during 50 cycles. Through cyclic voltammetry test, it seems that this difference in the performance between the full cell using Nafion 117 membrane and Fumasep anion exchange membrane came from increasing resistance due to chemical reaction between membrane and active material, not the capacity loss due to cross-over of active material through membrane.