• Title/Summary/Keyword: 4-dinitrobenzene)

Search Result 47, Processing Time 0.023 seconds

A Phi Class Glutathione S-transferase from Oryza sativa (OsGSTF5): Molecular Cloning, Expression and Biochemical Characteristics

  • Cho, Hyun-Young;Lee, Hae-Joo;Kong, Kwang-Hoon
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.511-516
    • /
    • 2007
  • A glutathione S-transferase (GST) related to the phi (F) class of enzymes only found in plants has been cloned from the Oryza sativa. The GST cDNA was cloned by PCR using oligonucleotide primers based on the OsGSTF5 (GenBank Accession No. $\underline{AF309382}$) sequences. The cDNA was composed of a 669-bp open reading frame encoding for 223 amino acids. The deduced peptide of this gene shared on overall identity of 75% with other known phi class GST sequences. On the other hands, the OsGSTF5 sequence showed only 34% identity with the sequence of the OsGSTF3 cloned by our previous study (Cho et al., 2005). This gene was expressed in Escherichia coli with the pET vector system and the gene product was purified to homogeneity by GSH-Sepharose affinity column chromatography. The expressed OsGSTF5 formed a homo-dimer composed of 28 kDa subunit and its pI value was approximately 7.8. The expressed OsGSTF5 displayed glutathione conjugation activity toward 1-chloro-2,4-dinitrobenzene and 1,2-epoxy-3-(p-nitrophenoxy)propane and glutathione peroxidase activity toward cumene hydroperoxide. The OsGSTF5 also had high activities towards the herbicides alachlor, atrazine and metolachlor. The OsGSTF5 was highly sensitive to inhibition by S-hexylGSH, benastatin A and hematin. We propose from these results that the expressed OsGSTF5 is a phi class GST and appears to play a role in the conjugation of herbicide and GPOX activity.

Kinetic Study on SNAr Reaction of 1-Y-Substituted-phenoxy-2,4-dinitrobenzenes with Hydroxide Ion: Effect of Substituent Y on Reactivity and Reaction Mechanism

  • Kang, Tae-Ah;Cho, Hyo-Jin;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2135-2138
    • /
    • 2014
  • A kinetic study is reported for the SNAr reaction of 1-Y-substituted-phenoxy-2,4-dinitrobenzenes (1a-1h) with OH- in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The second-order rate constant ($k_{OH^-}$) increases as the substituent Y in the leaving group changes from an electron-donating group (EDG) to an electronwithdrawing group (EWG). The Br${\o}$nsted-type plot for the reactions of 1a-1h is linear with ${\beta}_{lg}$ = -0.16, indicating that the reactivity of substrates 1a-1h is little affected by the leaving-group basicity. A linear Br${\o}$nsted-type plot with ${\beta}_{lg}=-0.3{\pm}0.1$ is typical for reactions reported previously to proceed through a stepwise mechanism in which formation of a Meisenheimer complex is the rate-determining step (RDS). The Hammett plot correlated with ${\sigma}_Y{^{\circ}}$ constants results in a much better correlation than that correlated with ${\sigma}_Y{^-}$constants, implyng that no negative charge is developing on the O atom of the leaving group (or expulsion of the leaving group is not advanced at all in the TS). This excludes a possibility that the $S_NAr$ reaction of 1a-1h with $OH^-$ proceeds through a concerted mechanism or via a stepwise pathway with expulsion of the leaving group being the RDS. Thus, the current reactions have been concluded to proceed through a stepwise mechanism in which expulsion of the leaving group occurs rapidly after the RDS.

Vinpocetine, a phosphodiesterase 1 inhibitor, mitigates atopic dermatitis-like skin inflammation

  • Yeon Jin Lee;Jin Yong Song;Su Hyun Lee;Yubin Lee;Kyu Teak Hwang;Ji-Yun Lee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.4
    • /
    • pp.303-312
    • /
    • 2024
  • Atopic dermatitis (AD) is the most common inflammatory pruritic skin disease worldwide, characterized by the infiltration of multiple pathogenic T lymphocytes and histological symptoms such as epidermal and dermal thickening. This study aims to investigate the effect of vinpocetine (Vinp; a phosphodiesterase 1 inhibitor) on a 1-chloro-2,4-dinitrobenzene (DNCB)-induced AD-like model. DNCB (1%) was administered on day 1 in the AD model. Subsequently, from day 14 onward, mice in each group (Vinp-treated groups: 1 mg/kg and 2 mg/kg and dexamethasone-treated group: 2 mg/kg) were administered 100 µl of a specific drug daily, whereas 0.2% DNCB was administered every other day for 30 min over 14 days. The Vinp-treated groups showed improved Eczema Area and Severity Index scores and trans-epidermal water loss, indicating the efficacy of Vinp in improving AD and enhancing skin barrier function. Histological analysis further confirmed the reduction in hyperplasia of the epidermis and the infiltration of inflammatory cells, including macrophages, eosinophils, and mast cells, with Vinp treatment. Moreover, Vinp reduced serum concentrations of IgE, interleukin (IL)-6, IL-13, and monocyte chemotactic protein-1. The mRNA levels of IL-1β, IL-6, Thymic stromal lymphopoietin, and transforming growth factor-beta (TGF-β) were reduced by Vinp treatment. Reduction of TGF-β protein by Vinp in skin tissue was also observed. Collectively, our results underscore the effectiveness of Vinp in mitigating DNCB-induced AD by modulating the expression of various biomarkers. Consequently, Vinp is a promising therapeutic candidate for treating AD.

Overexpression of Cotton Glutathione S-Transferase (GST) cDNA and Increase of low Temperature and Salt Tolerance in Plants

  • Kang, Won-Hee;Jong Hwa kim;Lim, Jung-Dae;Yu, Chang-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.117-122
    • /
    • 2002
  • Cotton Glutathione S-Transferase(GST: EC 2.5.1.18) was cloned and Gh-5 cDNA was overexpressed in tobacco (Nicotiana tabacum) plants. The transformation of cotton GST in tobacco plant was confirmed by northern blot analysis. Type I and Type II transcript patterns were identified in Gh-5 transgenic tobacco plants. Type I transcripts was only discussed in this paper. Glutathione and 1-chloro-2,4-dinitrobenzene (CDNB) were used as the substrates, and the activity of GST in the type I transgenic plants was about 2.5-fold higher than the non-expressers and wild type tobacco plants. The expression of cotton GST in tobacco plants proved that Gh-5 could be translated into functional protein. Type I transgenic plants produced functional GST in the cells. Type I showed higher GST specific activity than Type II in the transgenic plants. Control and transgenic seedlings were grown in the growth chamber and under the light at 15$^{\circ}C$, and the effects of cotton GST in the seedlings was evaluated. The growth rate of Gh-5 overexpressors was better than the control and non-transgenic tobacco plants. Salinity tolerance was also analyzed on the seeds of transgenic plants. Seeds of Gh-5 overexpressors and the wild type tobacco seedlings were germinated and grown at 0, 50, 100, 150, and 200 mM NaCl solution. Gh-5 transgenic seedlings showed higher growth rate over control seedlings at both 50 and 100 mM NaCl solution. But at 0, 150, and 200 mM NaCl concentration, the difference in growth rate was not detected.

A Probiotic Preparation Alleviates Atopic Dermatitis-Like Skin Lesions in Murine Models

  • Kim, Min-Soo;Kim, Jin-Eung;Yoon, Yeo-Sang;Seo, Jae-Gu;Chung, Myung-Jun;Yum, Do-Young
    • Toxicological Research
    • /
    • v.32 no.2
    • /
    • pp.149-158
    • /
    • 2016
  • Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex etiology that encompasses immunologic responses. AD is frequently associated with elevated immunoglobulin (Ig) E levels, and common environmental factors contribute to its pathogenesis. Several recent studies have documented the role of specific lactic acid bacteria in the treatment and prevention of AD in humans and mice. In this study, the efficacy of Duolac ATP, a probiotic preparation, was determined in a mouse model with AD-like skin lesions. Alterations in the cytokine levels and histological staining suggested the alleviation of AD. The in vivo test showed that T helper (Th)2 cytokines, IgE, interleukin (IL)-4, and IL-5, were significantly downregulated, whereas Th1 cytokines, IL-12p40 and interferon (IFN)-${\gamma}$, were upregulated in all groups of mice treated with Duolac ATP compared to that observed in the group of mice treated with 1-chloro-2,4-dinitrobenzene (DNCB) alone. Moreover, the scratch score decreased in all mice treated with Duolac ATP. Staining of the dorsal area of the mice in each group with hematoxylin and eosin and toluidine blue further confirmed the alleviation of AD in mice orally treated with Duolac ATP. These results suggest that Duolac ATP inhibits the development of AD-like skin lesions in NC/Nga mice by suppressing the Th2 cell response and increasing the Th1 cell response. Thus, Duolac ATP is beneficial and effective for the treatment of AD-like skin lesions.

Treatment of hazardous chemicals by Nanoscale Iron powder (나노크기 철 분말을 이용한 난분해성 유해화합물질의 처리)

  • 최승희;장윤영;황경엽;김지형
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.85-93
    • /
    • 1999
  • The destruction of hazardous chemicals such as chlorinated organic compounds(COCs) and nitroaromatic compounds(NACs) by zero-valent iron powder is one of the latest innovative technologies. In this paper. the rapid dechlorination of chlorinated compounds as well as transformation of nitro functional group to amine functional group in the nitroaromatic compounds using synthesized zero-valent iron powder with nanoscale were studied in anaerobic batch system. Nanoscale iron, characterized by high surface area to mass ratios(31.4$\textrm{m}^2$/g) and high reactivity, could quickly reacts with compounds such as TCE, chloroform, nitrobenzene, nitrotoluene, dinitrobenzene and dinitrotoluene, at concentration of 10mg/L in aqueous solution at room temperature and pressure. In this study, the TCE was dechlorinated to ethane and chloroform to methane and nitro groups in NACs were transformed to amino groups in less than 30min. These results indicated that this chemical method using nanoscale iron powder has the high potential for the remediation of soils and groundwater contaminated with hazardous toxic chemicals including chlorinated organic compounds and nitro aromatic compounds.

  • PDF

Effects of Herbal Complex, YJ-1, on Atopic Dermatitis in NC/Nga Mice Model (NC/Nga 마우스에서 생약 복합 조성물 YJ-1의 아토피성 피부염 치료 효능)

  • Lee, Geum-Seon;Lee, Ki-Man;Shim, Hong;Kim, Jin-Hong;Cheong, Jae-Hoon;Kang, Tae-Jin
    • YAKHAK HOEJI
    • /
    • v.56 no.2
    • /
    • pp.92-98
    • /
    • 2012
  • This study was conducted to determine if YJ-1, a novel herbal complex from a mixture of six oriental herbs (Hydnocarpi Semen, Sesami Semen, Dictamni Radicis Cortex, Momordicae Semen, Xanthii Fructus, and Sophorae Radix), has therapeutic properties for the treatment of atopic dermatitis (AD). Using AD like symptom-induced NC/Nga mice by 1-chloro 2,4-dinitrobenzene (DNCB), the effectiveness of YJ-1 on AD was evaluated. Elidel cream$^{(R)}$ (1% pimecrolimus) was used as a control. Dermal application of YJ-1 reduced major clinical signs of AD such as erythema, pruritus, lichenification, edema/escoriations, and dryness. Interestingly, YJ-1 more improved AD-related symptoms including decrease of spleen weight, IL-4, and IgE level in the serum as well as reduction of scratching counts and clinical skin severity in the NC/Nga AD mouse model. Especially, treatment of YJ-1 at 20% in NC/Nga mice more effected than Elidel cream. These results suggest that the ointment of YJ-1 may enhance the process of AD healing by alleviating allergic reaction and has potential for therapeutic reagent for the treatment of AD.

Tolerance Mechanism to Simazine in Coix lacryma-jobi (율무(Coix lacryma-jobi)의 제초제 Simazine에 대한 내성기구)

  • Ma, Sang-Yong;Kim, Jong-Seok;Chun, Jae-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.37-43
    • /
    • 1997
  • Tolerance mechanism to simazine (6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine) in Coix lacryma-jobi was investigated with respect to herbicide detoxification via glutathione conjugation. Simazine was initially absorbed by seedlings of C. lacryma-jobi and corn, but after 12 hours of treatment, no significant difference in simazine absorption was found in both species. Simazine absorbed was rapidly metabolized to glutathione-simazine conjugate. One to six hours after treatment, metabolism was approximately 2-fold faster in C. lacryma-jobi than in corn. Glutathione content was found 1.5- and 2.3-fold higher in coleoptile and root of C. lacryma-jobi, respectively, compared with corn. In both species, the highest concentration of glutathione was found in coleoptile tissue. Glutathione S-transferase that exhibits activity with 1-chloro-2,4-dinitrobenzene was not significantly different between two species. However, glutathione S-transferase activity with simazine was approximately 2-fold greater in C. lacryma-jobi than in corn. The glutathione S-transferase activity was 20 to 30% greater in shoot of either species than in root. Fast protein liquid chromatography-anion exchange column was used to separate glutathione S-transferase isozymes in coleoptiles of C. lacryma-jobi and corn. A peak of glutathione S-transferase activity with 1-chloro-2,4-dinitrobenzene and two peaks of glutathione S-transferase activity with simazine from C. lacryma-jobi were coeluted with those from corn, but showed greater activity than in the case of corn. Another glutathione S-transferase isozyme that exhibits activity with simazine was detected in the elution of C. lacryma-jobi extract, but not in corn. Electron transport in chloroplast thylakoids isolated from leaves of both species was equally sensitive to simazine applied at 1 to 100 nM. These results indicate that the simazine tolerance in C. lacryma-jobi is due to its capacity to detoxify the herbicide via glutathione conjugation, which is positively correlated with the level of glutathione content and glutathione S-transferase activity.

  • PDF

Effect of SPZZC, a Composition of Herb Extracts, on Atopic Dermatitis in BALB/c and NC/Nga Mouse (BALB/c 및 NC/Nga 마우스의 아토피성 피부질환모델에서 생약조성물 SPZZC의 치료효능)

  • Lee, Geum-Seon;Pena, Ike Dela;Choi, Ji-Young;Yoon, Seo-Young;Choi, Jong-Hyun;Kang, Tae-Jin;Oh, Se-Koon;Cheong, Jae-Hoon
    • YAKHAK HOEJI
    • /
    • v.52 no.3
    • /
    • pp.232-239
    • /
    • 2008
  • The aim of this study was to evaluate if a composition of herb extracts, PLX-PLS was effective to treat atopic dermatitis (AD) in mice. SPZZC is a composition of herb extracts containing the roots of Scopolia parviflora and Paeonia lactiflora, the herb of Zizania caudiflora, the fruit of Ziziphus jujuba and the leaf of Chinese arborvitae. AD in BALB/c mouse was induced by patching ovoalbumin on the backside, while it in NC/Nga mouse was induced by repeated application of 1-chloro 2,4-dinitrobenzene (DNCB). Mice were topically treated with SPZZC or Domohorn ointment on the backside for 2 weeks (BALB/c) or 1 week (NC/Nga). Scratching behavior, clinical skin severity and the levels of WBC, neutrophil, eosinophil and total serum IgE were measured. After AD induction, scores of scratching behavior and clinical skin severity and the levels of WBC, neutrophil, eosinophil and total serum IgE were increased. Treatment with SPZZC significantly decreased scores of scratching behavior and clinical skin severity in a dose dependent manner in NC/Nga and BALB/c mice. Treatment with SPZZC 2% significantly decreased also the levels of WBC, neutrophil, eosinophil and total serum IgE. Especially, treatment of SPZZC 2% reduced more rapidly score of clinical skin severity than clobetasol cream. These results suggest that the SPZZC may be an alternative substance for the management of AD.

Exploring the molecular characteristics, detoxification functions, and immune responses of two glutathione S-transferases in redlip mullet (Liza haematochelia)

  • Jeongeun Kim;Welivitiye Kankanamge Malithi Omeka;Qiang Wan;Jehee Lee
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.5
    • /
    • pp.314-328
    • /
    • 2024
  • The mechanism for the elimination of xenobiotics undergoes three different phases of reactions in organisms. Among these, glutathione S-transferases (GSTs) are classified as phase II detoxification enzymes, catalyzing the conjugation of electrophilic substrates to glutathione or reduced hydroperoxides. This study aimed to investigate the molecular characteristics, detoxification functions, and immune responses of GST omega (LhGSTO1) and kappa (LhGSTK1) in redlip mullet. The open reading frames of LhGSTO1 (720 bp) and LhGSTK1 (687 bp) encoded proteins of 239 and 228 amino acids, respectively. Sequence analysis revealed that LhGSTO1 and LhGSTK1 possessed GSH-binding sites in their N-terminal domains. Substrate-binding sites in the C-terminal domain were exclusively identified in LhGSTO1. In the tissue-specific transcription profile analysis, both LhGSTO1 and LhGSTK1 were ubiquitously expressed in all tissues of healthy mullets. Temporal expression analysis of LhGSTO1 and LhGSTK1 in the blood showed that their expression was significantly modulated by polyinosinic:polycytidylic (poly I:C), lipopolysaccharide (LPS), and Lactococcus garvieae. Different chemical and cellular assays were performed to assess the detoxification and cellular protective abilities of the two proteins. A substrate specificity test using the recombinant proteins revealed that both proteins possessed specific activity toward 1-chloro-2,4-dinitrobenzene (CDNB). In the disk diffusion assay, the smallest clearance zones were observed for LhGSTO1 and LGSTK1 against CdCl2. In the cell protection assay, both LhGSTO1 and LhGSTK1 showed significant Cd detoxification ability compared to the control. Collectively, these results demonstrate that GST omega and kappa are involved in host defense against immune stimulants and xenobiotics in redlip mullet.